浏览全部资源
扫码关注微信
1. 吉林大学电子科学与工程学院 集成光电子学国家重点联合实验室,吉林 长春,130012
2. 河北半导体研究所 专用集成电路国家重点实验室,河北 石家庄,050051
Received:11 May 2019,
Revised:06 August 2019,
Published Online:04 June 2019,
Published:05 October 2019
移动端阅览
李赜明, 余烨, 焦腾等. 两步氧化法制备&beta;-Ga<sub>2</sub>O<sub>3</sub>薄膜[J]. 发光学报, 2019,40(10): 1247-1253
LI Ze-ming, YU Ye, JIAO Teng etc. Preparation of &beta;-Ga<sub>2</sub>O<sub>3</sub> Films by Two-step Thermal Oxidation[J]. Chinese Journal of Luminescence, 2019,40(10): 1247-1253
李赜明, 余烨, 焦腾等. 两步氧化法制备&beta;-Ga<sub>2</sub>O<sub>3</sub>薄膜[J]. 发光学报, 2019,40(10): 1247-1253 DOI: 10.3788/fgxb20194010.1247.
LI Ze-ming, YU Ye, JIAO Teng etc. Preparation of &beta;-Ga<sub>2</sub>O<sub>3</sub> Films by Two-step Thermal Oxidation[J]. Chinese Journal of Luminescence, 2019,40(10): 1247-1253 DOI: 10.3788/fgxb20194010.1247.
为获得高质量的-Ga
2
O
3
薄膜,对传统的GaN薄膜高温氧化方法进行了优化。我们通过对GaN薄膜分别进行一步或两步高温氧化的方法制备了-Ga
2
O
3
薄膜,并通过X射线衍射、场发射扫描电子显微镜、拉曼光谱等对制备的样品进行了测试、对比与分析。结果表明,950℃下GaN薄膜无法完全氧化,而直接1 150℃氧化得到的样品并没有明显的晶向。相比之下,通过两步氧化法,GaN薄膜被完全氧化,且得到的-Ga
2
O
3
薄膜具有明显的沿
<
2
01
>
方向的晶向,样品表面显示出明显的纳米线结构。最佳的氧化时间为在950℃下氧化3 h之后在1 150℃下氧化1 h,此时得到样品的纳米线结构最明显,其纳米线的直径约为30~40 nm。拉曼光谱测试证实了该条件下获得的样品具有较高的晶体质量。通过分析不同样品结构以及形貌特性,我们发现不同温度下的不同氧化模式是导致该结果的主要原因。
To obtain -Ga
2
O
3
films with high quality
we optimized conventional GaN high temperature oxidation. The -Ga
2
O
3
thin films were prepared from GaN thin films by one-step and two-step high temperature oxidation
respectively. The prepared samples were characterized by X-ray diffraction (XRD)
filed emission scanning electron microscopy (FESEM) and Raman spectroscopy. The results showed that the GaN films could not be completely oxidized at 950℃
and the sample obtained directly at 1 150℃ had no obvious crystal orientation. In contrast
the GaN films were completely oxidized by two-step oxidation method
and the obtained -Ga
2
O
3
films had obvious crystal orientation along the direction of
<
2
01
>
. The surfaces of the samples obtained by two-step oxidation showed nanowire structures. The optimized oxidation time was oxidation at 950℃ for 3 h followed by oxidation at 1 150℃ for 1 h
the obtained sample had most obvious nanowire structures
and the diameters of the nanowires were about 30-40 nm. Raman spectroscopy confirmed that the sample obtained under this condition had high crystalline quality. By analyzing the structure and morphology properties of different samples
we found that different oxidation modes at different temperatures were the main causes of these results.
HIGASHIWAKI M,SASAKI K,MURAKAMI H,et al.. Recent progress in Ga2O3 power devices[J]. Semicond. Sci. Technol., 2016,31(3):034001-1-11.
GOYAL A,YADAV B S,THAKUR O P,et al.. Effect of annealing on -Ga2O3 film grown by pulsed laser deposition technique[J]. J. Alloys Compd., 2014,583:214-219.
PRATIYUSH A S,KRISHNAMOORTHY S,KUMAR S,et al.. Demonstration of zero bias responsivity in MBE grown -Ga2O3 lateral deep-UV photodetector[J]. Jpn. J. Appl. Phys., 2018,57(6):060313.
KOROTCENKOV G,BRINZARI V,HAM M H. Materials acceptable for gas sensor design:advantages and limitations[J]. Key Eng. Mater., 2018,780:80-89.
郭道友,李培刚,陈政委,等. 超宽禁带半导体-Ga2O3及深紫外透明电极、日盲探测器的研究进展[J]. 物理学报, 2019,68(7):078501-1-36. GUO D Y,LI P G,CHEN Z W,et al.. Ultra-wide bandgap semiconductor of -Ga2O3 and its research progress of deep ultraviolet transparent electrode and solar-blind photodetector[J]. Acta Phys. Sinica, 2019,68(7):078501-1-36. (in Chinese)
XIA Z B,JOISHI C,KRISHNAMOORTHY S,et al.. Delta doped -Ga2O3 field effect transistors with regrown Ohmic contacts[J]. IEEE Electron Device Lett., 2018,39(4):568-571.
HANS H,MAUZE A,AHMADI E,et al.. n-type dopants in (001) -Ga2O3 grown on (001) -Ga2O3 substrates by plasma-assisted molecular beam epitaxy[J]. Semicond. Sci. Technol., 2018,33(4):045001.
WEI J Q,KIM K,LIU F,et al.. -Ga2O3 thin film grown on sapphire substrate by plasma-assisted molecular beam epitaxy[J]. J. Semicond., 2019,40:012802-1-5.
CHENG Z Z,HANKE M,GALAZKA Z,et al.. Growth mode evolution during (100)-oriented -Ga2O3 homoepitaxy[J]. Nanotechnology, 2018,29(39):395705.
MAZZOLINI P,VOGT P,SCHEWSKI R,et al.. Faceting and metal-exchange catalysis in (010) -Ga2O3 thin films homoepitaxially grown by plasma-assisted molecular beam epitaxy[J]. APL Mater., 2019,7(2):022511-1-8.
INGEBRIGTSEN M E,VARLEY J B,KUZNETSOV A Y,et al.. Iron and intrinsic deep level states in Ga2O3[J]. Appl. Phys. Lett., 2018,112(4):042104-1-5.
CHABAK K D,MCCANDLESS J P,MOSER N A,et al.. Recessed-gate enhancement-mode -Ga2O3 MOSFETs[J]. IEEE Electron Device Lett., 2018,39(1):67-70.
ALEMA F,HERTOG B,MUKHOPADHYAY P,et al.. Solar blind Schottky photodiode based on an MOCVD-grown homoepitaxial -Ga2O3 thin film[J]. APL Mater., 2019,7(2):022527-1-6.
CAO Q,HE L N,XIAO H D,et al.. -Ga2O3 epitaxial films deposited on epi-GaN/sapphire (0001) substrates by MOCVD[J]. Mater. Sci. Semicond. Process., 2018,77:58-63.
马征征,董鑫,庄仕伟,等. 退火对Ga2O3薄膜特性的影响[J]. 发光学报, 2017,38(5):606-610. MA Z Z,DONG X,ZHUANG S W,et al.. Effect of annealing on Ga2O3 film[J]. Chin. J. Lumin., 2017,38(5):606-610. (in Chinese)
ZHANG Y W,ALEMA F,MAUZE A,et al.. MOCVD grown epitaxial -Ga2O3 thin film with an electron mobility of 176 cm2/V s at room temperature[J]. APL Mater., 2019,7(2):022506-1-6.
XIU X Q,ZHANG L Y,LI Y W,et al.. Application of halide vapor phase epitaxy for the growth of ultra-wide band gap Ga2O3[J]. J. Semicond., 2019,40(1):011805-1-6.
LEACH J H,UDWARY K,RUMSEY J,et al.. Halide vapor phase epitaxial growth of -Ga2O3 and -Ga2O3 films[J]. APL Mater., 2019,7(2):022504-1-7.
CHOI B,ALLABERGENOV B,LYU H K,et al.. Twin-induced phase transition from -Ga2O3 to -Ga2O3 in Ga2O3 thin films[J]. Appl. Phys. Express, 2018,11(6):061105.
OON H S,CHEONG K Y. Recent development of gallium oxide thin film on GaN[J]. Mater. Sci. Semicond. Process., 2013,16(5):1217-1231.
WOLTER S D,MOHNEY S E,VENUGOPALAN H,et al.. Kinetic study of the oxidation of gallium nitride in dry air[J]. J. Electrochem. Soc., 1998,145(2):629-632.
CHEN P,ZHANG R,XU X F,et al.. The oxidation of gallium nitride epilayers in dry oxygen[J]. Appl. Phys. A, 2000,71(2):191-194.
KIM H,PARK S J,HWANG H. Thermally oxidized GaN film for use as gate insulators[J]. J. Vac. Sci. Technol. B,2001,19(2):579-581.
ZHOU Y,AHYI C,ISAACS-SMITH T,et al.. Formation,etching and electrical characterization of a thermally grown gallium oxide on the Ga-face of a bulk GaN substrate[J]. Solid State Electron., 2008,52(5):756-764.
WENG W Y,HSUEH T J,CHANG S J,et al.. A -Ga2O3 solar-blind photodetector prepared by furnace oxidization of GaN thin film[J]. IEEE Sens. J., 2011,11(4):999-1003.
WEI W,QIN Z X,ZHAO S,et al.. Structural properties of -Ga2O3 formed by dry thermal oxidization process on GaN[J]. Mater. Sci. Semicond. Process., 2012,15(5):578-581.
YAMADA T,ITO J,ASAHARA R,et al.. Comprehensive study on initial thermal oxidation of GaN(0001) surface and subsequent oxide growth in dry oxygen ambient[J]. J. Appl. Phys., 2017,121(3):035303.
DENG G Q,ZHANG Y T,YU Y,et al.. Study on the structural,optical,and electrical properties of the yellow light-emitting diode grown on free-standing (0001) GaN substrate[J]. Superlatt. Microstruct., 2018,116:1-8.
赵丽伟,滕晓云,郝秋艳,等. 金属有机化学气相沉积生长的GaN膜中V缺陷研究[J]. 液晶与显示, 2006,21(1):38-42. ZHAO L W,TENG X Y,HAO Q Y,et al.. V defects in GaN films grown by metal-organic chemical vapor deposition[J]. Chin. J. Liq. Cryst. Disp., 2006,21(1):38-42. (in Chinese)
GRZEGORY I,BOCKOWSKI M,LUCZNIK B,et al.. Recent results in the crystal growth of GaN at high N2 pressure[J]. MRS Internet J. Nitride Semicond. Res., 1996,1:e20.
RAO R,RAO A M,XU B,et al.. Blueshifted Raman scattering and its correlation with the
growth direction in gallium oxide nanowires[J]. J. Appl. Phys., 2005,98(9):094312-1-5.
KUMAR S,SARAU G,TESSAREK C,et al.. Study of iron-catalysed growth of -Ga2O3 nanowires and their detailed characterization using TEM,Raman and cathodoluminescence techniques[J]. J. Phys. D:Appl. Phys., 2014,47(43):435101-1-10.
JIANG J L,ZHANG J,LI J P,et al.. Red-light emission of Li-doped Ga2O3 one-dimensional nanostructures and the luminescence mechanism[J]. Chem. Phys. Lett., 2019,719:8-11.
LI Y W,XIONG Z N,ZHANG D D,et al.. Study of GaN nanorods converted from -Ga2O3[J]. Superlatt. Microstruct., 2018,117:235-240.
0
Views
56
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution