浏览全部资源
扫码关注微信
1. 山东大学(威海) 空间科学与物理学院,山东 威海,264209
2. 墨尔本大学 化学院 维多利亚,澳大利亚,3010
3. 山东大学(威海) 信息工程学院,山东 威海,264209
4. 中国科学院 上海技术物理研究所 上海,200083
5. 济南市半导体元件实验所,山东 济南,250014
Received:22 April 2019,
Revised:30 May 2019,
Published Online:04 June 2019,
Published:05 October 2019
移动端阅览
郑卫民, 黄海北, 李素梅等. δ-掺杂受主的扩散对GaAs/AlAs量子阱子带的影响[J]. 发光学报, 2019,40(10): 1240-1246
ZHENG Wei-min, HUANG Hai-bei, LI Su-mei etc. Effect of δ-doped Acceptor Diffusion on Subbands of GaAs/AlAs Quantum Wells[J]. Chinese Journal of Luminescence, 2019,40(10): 1240-1246
郑卫民, 黄海北, 李素梅等. δ-掺杂受主的扩散对GaAs/AlAs量子阱子带的影响[J]. 发光学报, 2019,40(10): 1240-1246 DOI: 10.3788/fgxb20194010.1240.
ZHENG Wei-min, HUANG Hai-bei, LI Su-mei etc. Effect of δ-doped Acceptor Diffusion on Subbands of GaAs/AlAs Quantum Wells[J]. Chinese Journal of Luminescence, 2019,40(10): 1240-1246 DOI: 10.3788/fgxb20194010.1240.
在15 nm GaAs/5 nm AlAs单量子阱的GaAs阱层中间,分别进行不同浓度剂量的铍受主的-掺杂。铍受主在量子阱层中的扩散浓度分布,由扩散方程数值解出。高温下扩散在GaAs阱层中的Be受主将发生电离,成为带负电荷的受主离子,同时也向量子阱价带的子带中引入空穴。带负电荷的扩散受主离子和价带子带中的空穴,它们都是带电粒子在GaAs阱层中按库伦定律激发电场。相比较而言,对于无掺杂同结构量子阱,在空穴的薛定谔中增加了一个额外的微扰势,从而使无掺杂的量子阱价带的子带有所改变。在有效质量和包络函数近似下,通过循环迭代方法,数值求解了既满足薛定谔方程又满足泊松方程的空穴波函数,找出了自洽、收敛的空穴子带的能量本征值。计算发现考虑到这种额外微扰势,重空穴基态子带hh的能量有一个电子伏特变化,并且随着掺杂受主剂量的增加,重空穴基态子带hh向着价带顶红移,计算结果与实验测量符合得很好。
A GaAs/AlAs quantum well
with a 15 nm-thick GaAs well surrounded by a 5 nm-thick AlAs barrier
is -doped with Be acceptors of various doping levels at the well center. The ionized acceptor diffused profiles within the quantum well are solved by the diffusion equation. The additional potential
due to both the ionized acceptor diffused profile and hole distribution in valence-band subbands
is incorporated into the quantum well potential. The self-consistent solution and converged hole energy eigenvalue for the Schrdinger's and Poisson's equations are looked for by an iterative method. It is found through calculations that the energy of the heavy-hole ground state hh has changed by about 1 meV
while it is red-shifted towards the valence-band top with increasing Be acceptor doping concentrations. The calculated results are in a good agreement with experimental results.
EISELE H,LI L H,LINFIELD E H. High-performance GaAs/AlAs superlattice electronic devices in oscillators at frequencies 100-320 GHz[J]. Appl. Phys. Lett., 2018,112(17):172103-1-5.
LI Y,ZHU Y H,HUANG J,et al.. The effects of temperature on optical properties of InGaN/GaN multiple quantum well light-emitting diodes[J]. J. Appl. Phys., 2017,121(5):053105-1-5.
梅山孩.锥状ZnO纳米结构薄膜的制备及其场发射特性[J].液晶与显示,2010,25(6):780-783. MEI S H. Preparation and field emission properties of cone-shaped ZnO nanomaterial[J]. Chin. J. Liq. Cryst. Disp., 2010,25(6):780-783. (in Chinese)
ZHANG P,LIU R Y,DU R R,et al.. Composite fermion states around the two-dimensional hole Landau level filling factor 3/2 in tilted magnetic fields[J]. Phys. Rev. B, 2017,95(15):155316-1-5.
HUANG H B,ZHENG W M,CONG W Y,et al.. Raman and photoluminescence studies of transitions of quantum-confined acceptors[J]. Phys. Status Solid B, 2013,250(7):1352-1355.
PETROV P V,KOKURIN I A,KLIMKO G V,et al.. Optical spectroscopy of single beryllium acceptors in GaAs/AlGaAs quantum well[J]. Phys. Rev. B, 2016,94(11):115307-1-5.
GAMMON D,MERLIN R,MASSELINK W T,et al.. Raman spectra of shallow acceptors in quantum-well structures[J]. Phys. Rev. B, 1986,33(4):2919-2922.
REEDER A A,MCCOMBE B D,CHAMBERS F A,et al.. Far-infrared study of confinement effects on acceptors in GaAs/AlxGa1-xAs quantum wells[J]. Phys. Rev. B, 1988,38(6):4318-4321.
ZHENG W M,HALSALL M P,HARMER P,et al.. Acceptor binding energy in -doped GaAs/AlAs multiple-quantum wells[J]. J. Appl. Phys., 2002,92(10):6039-6042.
ZHENG W M,WANG A F,LU Y B,et al.. Internal transitions of acceptors confined in delta-doped GaAs/AlAs multiple quantum wells[J]. Semicond. Sci. Technol., 2007,22(2):74-79.
ZHENG W M,LI S M,CONG W Y,et al.. Excitonic transitions in Be-doped GaAs/AlAs multiple quantum well[J]. Chin. Phys. B, 2016,25(4):047302-1-5.
HOLTZ P O,SUNDARAM M,MERZ J L,et al.. Observation of the acceptor-bound exciton confined in narrow GaAs/AlxGa1-xAs quantum wells in photoluminescence excitation[J]. Phys. Rev. B, 1989,40(14):10021-10024.
ZHENG W M,HALSALL M P,HARRISON P,et al.. Effect of quantum-well confinement on acceptor state lifetime in -doped GaAs/AlAs multiple quantum wells[J]. Appl. Phys. Lett., 2018,83(18):3719-3721.
MASSELINK W T,CHANG Y C,MORKO H. Acceptor spectra of AlxGa-xAs-GaAs quantum wells in external fields:electric,magnetic,and uniaxial stress[J]. Phys. Rev. B, 1985,32(8):5190-5201.
MASSELINK W T,CHANG Y C,MORKO H. Binding energies of acceptors in GaAs-AlxGa1-xAs quantum wells[J]. Phys. Rev. B, 1983,28(12):7373-7376.
HARRISON P,HAGSTON W E. The effect of linear and non-linear diffusion on exciton energies in quantum wells[J]. J. Appl. Phys., 1996,79(11):8451-8455.
PURCELL E M,MORIN D J. Electricity and Magnetism [M]. 3rd ed. Cambridge:Cambridge University Press, 2013:86-87.
HARRISON P. Computational Methods in Physics, Chemistry and Biology:An Introduction [M]. Chichester:John Wiley & Sons Ltd, 2001:16-17.
HARRISON P. Differentiating between constant and concentration-dependent diffusion coefficients via the optical spectroscopy of excitons in quantum wells[J]. Semicond. Sci. Technol., 1996,11(7):1022-1025.
WYPIR G,KAISERZ S,KOSSACKI P,et al.. Comparison of optical and HRTEM studies of interdiffusion in CdTe/CdMnTe quantum wells[J]. Semicond. Sci. Technol., 1998,13(1):93-96.
HARRISON P. Quantum Wells, Wires and Dots: Theoretical and Computational Physics [M]. Chichester:Wiley, 2000:71-73.
SEZ S M. Physics of Semiconductor Devices [M]. New York:Wiley, 1981:20-21.
孙莹,杨瑞霞,武一宾,等.GaAs/AlxGa1-xAs量子阱红外探测器光谱特性的研究[J]. 半导体技术,2010,35(3):264-268.SUN Y,YANG R X,WU Y B,et al.. Study on spectral characteristic of GaAs/AlxGa1-xAs QWIP[J]. Semicond. Technol., 2010,35(3):264-268. (in Chinese)
FERREIRA A C,HOLTZ P O,SERNELIUS B E,et al.. Exciton properties in p-type GaAs/AlxGa1-xAs quantum wells in the high doping regime[J]. Phys. Rev. B, 1996,54(23):16989-16993.
HOLTZ P O,FERREIRA A C,SERNELIUS B E,et al.. Many-body effects in highly acceptor-doped GaAs/AlxGa1-xAs quantum wells[J]. Phys. Rev. B, 1998,58(8):4624-4628.
HOLTZ P Q,ZHAO Q X. Impurities Confined in Quantum Structures [M]. Berlin,Heidelberg:Springer, 2004:92-94.
0
Views
51
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution