FENG Yu-qing, LI Xi,. Surface Enhanced Raman Scattering Probes Based onTargeted Gold Nanorods for Detecting Hela Cells[J]. Chinese Journal of Luminescence, 2019,40(10): 1215-1219
FENG Yu-qing, LI Xi,. Surface Enhanced Raman Scattering Probes Based onTargeted Gold Nanorods for Detecting Hela Cells[J]. Chinese Journal of Luminescence, 2019,40(10): 1215-1219 DOI: 10.3788/fgxb20194010.1215.
Surface Enhanced Raman Scattering Probes Based onTargeted Gold Nanorods for Detecting Hela Cells
表皮生长因子受体(EGFR)是一种肿瘤表面标记性蛋白。本文报道了基于anti-EGFR功能化金纳米棒探针AuNRs probes的表面增强拉曼散射(SERS),用于EGFR阳性肿瘤细胞的检测。通过AuNRs probes上anti-EGFR特异性结合到EGFR阳性癌细胞上,可使修饰于金纳米棒表面的拉曼活性染料4-巯基苯甲酸(4-MBA)位于1 100 cm
Epidermal growth factor receptor(EGFR)is overexpressed on tumor surface. A surface enhanced Raman scattering(SERS) probe based on epidermal growth factor receptor antibody(anti-EGFR) conjugated Au nanorods(AuNRs probes) was used for EGFR positive cancer cell detection. When AuNRs probes were specific bound to EGFR positive cell
SERS signals from Raman active molecule 4-mercaptobenzoic acid(4-MBA) modified on AuNRs were two to three times more than those cells incubated with 4-MBA labeled AuNRs(AuNRs-MBA). This kind of SERS probe has great potential in the diagnosis of EGFR positive tumor due to its specific targeting
high SERS sensitivity and biocompatibility.
关键词
Keywords
references
HALDAVNEKAR R,VENKATAKRISHNAN K,TAN B. Non plasmonic semiconductor quantum SERS probe as a pathway for in vitro cancer detection[J]. Nat. Commun., 2018,9(1):3065-1-18.
HUANG Z W,MCWILLIAMS A,LUI H,et al.. Near-infrared Raman spectroscopy for optical diagnosis of lung cancer[J]. Int. J. Cancer, 2003,107(6):1047-1052.
LI J B,CHENG W N,WANG X L,et al.. Electron transfer of cytochrome c on surface-enhanced Raman scattering-active substrates:material dependence and biocompatibility[J]. Chemistry, 2017,23(38):9034-9038.
ZOU S,WEAVER M J. Surface-enhanced Raman scattering on uniform transition-metal films:toward a versatile adsorbate vibrational strategy for solid-nonvacuum interfaces[J]. Anal. Chem., 1998,70(11):2387-2395.
QIAO X Z,SU B S,LIU C,et al.. Selective surface enhanced raman scattering for quantitative detection of lung cancer biomarkers in superparticle@MOF structure[J]. Adv. Mater., 2018,30(5):1702275.
ANDREOU C,KISHORE S A,KIRCHER M F. Surface-enhanced raman spectroscopy:a new modality for cancer imaging[J]. J. Nucl. Med., 2015,56(9):1295-1299.
BUTLER H J,FOGARTY S W,KERNS J G,et al.. Gold nanoparticles as a substrate in bio-analytical near-infrared surface-enhanced Raman spectroscopy[J]. Analyst, 2015,140(9):3090-3097.
ALTUNBEK M,KUKU G,CULHA M. Gold nanoparticles in single-cell analysis for surface enhanced raman scattering[J]. Molecules, 2016,21(12):1617-1-18.
DOKALA A,THAKUR S S. Extracellular region of epidermal growth factor receptor:a potential target for anti-EGFR drug discovery[J]. Oncogene, 2017,36(17):2337-2344.
COSTA R,SHAH A N,SANTA-MARIA C A,et al.. Targeting epidermal growth factor receptor in triple negative breast cancer:new discoveries and practical insights for drug development[J]. Cancer Treat. Rev., 2017,53:111-119.
YEWALE C,BARADIA D,VHORA I,et al.. Epidermal growth factor receptor targeting in cancer:a review of trends and strategies[J]. Biomaterials, 2013,34(34):8690-8707.
KEUL H A,MLLER M,BOCKSTALLER M R. Structural evolution of gold nanorods during controlled secondary growth[J]. Langmuir, 2007,23(20):10307-10315.
BRIOUDE A,JIANG X C,PILENI M P. Optical properties of gold nanorods:DDA simulations supported by experiments[J]. J. Phys. Chem. B, 2005,109(27):13138-13142.
WILLITSFORD A H,CHADWICK C T,KURTZ S,et al.. Resonance-enhanced raman scattering of ring-involved vibrational modes in the 1B2u absorption band of benzene,including the kekule vibrational modes 9 and 10[J]. J. Phys. Chem. A, 2016,120(4):503-506.