High Efficiency InGaN Green LEDs with Additional Optimized p-AlGaN Interlayer
Device Fabrication and Physics|更新时间:2020-08-12
|
High Efficiency InGaN Green LEDs with Additional Optimized p-AlGaN Interlayer
Chinese Journal of LuminescenceVol. 40, Issue 9, Pages: 1108-1114(2019)
作者机构:
南昌大学 国家硅基LED工程技术研究中心, 江西 南昌 330096
作者简介:
基金信息:
Supported by National Key Research and Development Program of China(2016YFB0400600,2016YFB0400601);State Key Program of National Natural Science Foundation of China(61334001);Development Program of Jiangxi Province(20165ABC28007, 20182ABC28003)
YU Hao, ZHENG Chang-da, DING Jie etc. High Efficiency InGaN Green LEDs with Additional Optimized p-AlGaN Interlayer[J]. Chinese Journal of Luminescence, 2019,40(9): 1108-1114
YU Hao, ZHENG Chang-da, DING Jie etc. High Efficiency InGaN Green LEDs with Additional Optimized p-AlGaN Interlayer[J]. Chinese Journal of Luminescence, 2019,40(9): 1108-1114 DOI: 10.3788/fgxb20194009.1108.
High Efficiency InGaN Green LEDs with Additional Optimized p-AlGaN Interlayer
Significantly improved external quantum efficiency was achieved by growing an additional optimized 25 nm low-doped p-AlGaN interlayer(IL) after the conventional p-AlGaN electron blocking layer for InGaN/GaN green LEDs with V-pits on Si(111) substrate. At 35 A/cm
2
current density
external quantum efficiency(EQE) and output power reach up to 43.6% and 362.3 mW with the dominant wavelength of 520 nm. This is a new record for green InGaN-based LEDs. The underlying physical mechanism is attributed to the enhanced holes injection efficiency
via
V-shaped pits assisted by the optimized p-AlGaN interlayer. This paper provides an effective approach to improve efficiency especially suitable for those InGaN/GaN LED with V-shape pits.
关键词
Keywords
references
CRAWFORD M H. LEDs for solid-state lighting:performance challenges and recent advances[J]. IEEE J. Sel. Top. Quantum Electron., 2009, 15(4):1028-1040.
NAKAMURA S,SENOH M,IWASA N,et al.. High-brightness InGaN blue,green and yellow light-emitting diodes with quantum well structures[J]. Jpn. J. Appl. Phys., 1995,34(7A):L797-L799.
KIM M H,SCHUBERT M F,DAI Q,et al.. Origin of efficiency droop in GaN-based light-emitting diodes[J]. Appl. Phys. Lett., 2007,91(18):183507-1-3.
VAMPOLA K J,IZA M,KELLER S,et al.. Measurement of electron overflow in 450 nm InGaN light-emitting diode structures[J]. Appl. Phys. Lett., 2009,94(6):061116-1-3.
SHEN Y C,MUELLRE G O,WATANABE S,et al.. Auger recombination in InGaN measured by photoluminescence[J]. Appl. Phys. Lett., 2007,91(14):141101-1-3.
YANG Y,CAO X A,YAN C H. Investigation of the nonthermal mechanism of efficiency rolloff in InGaN light-emitting diodes[J]. IEEE Trans. Electron Dev., 2008,55(7):1771-1775.
NI X F,QIAN F,SHIMADA R,et al.. Reduction of efficiency droop in InGaN light emitting diodes by coupled quantum wells[J]. Appl. Phys. Lett., 2008,93(17):171113-1-3.
WANG C H,KE C C,LEE C Y,et al.. Hole injection and efficiency droop improvement in InGaN/GaN light-emitting diodes by band-engineered electron blocking layer[J]. Appl. Phys. Lett., 2010,97(26):261103-1-3.
ZHANG Z H,JU Z G,LIU W,et al.. Improving hole injection efficiency by manipulating the hole transport mechanism through p-type electron blocking layer engineering[J]. Opt. Lett., 2014,39(8):2483-2486.
SU C Y,TU C G,LIU W H,et al.. Enhancing the hole-injection efficiency of a light-emitting diode by increasing Mg doping in the p-AlGaN electron-blocking layer[J]. IEEE Trans. Electron Dev., 2017,64(8):3226-3233.
HANGLEITER A,HITZEL F,NETZEL C,et al.. Suppression of nonradiative recombination by V-shaped pits in GaInN/GaN quantum wells produces a large increase in the light emission efficiency[J]. Phys. Rev. Lett., 2005,95(12):127402-1-4.
QUAN Z J,WANG L,ZHENG C D,et al.. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes[J]. J. Appl. Phys., 2014,116(18):183107-1-5.
WU X M,LIU J L,QUAN Z J,et al.. Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes[J]. Appl. Phys. Lett., 2014,104(22):221101-1-5.
YOO Y S,NA J H,SON S J,et al.. Effective suppression of efficiency droop in GaN-based light-emitting diodes:role of significant reduction of carrier density and built-in field[J]. Sci. Rep., 2016,6:34586-1-9.
LV Q J,LIU J L,MO C L,et al.. Realization of highly efficient InGaN green LEDs with sandwich-like multiple quantum well structure:role of enhanced interwell carrier transport[J]. ACS Photon., 2019,6(1):130-138.
SHEN Y C,WIERER J J,KRAMES M R,et al.. Optical cavity effects in InGaN/GaN quantum-well-heterostructure flip-chip light-emitting diodes[J]. Appl. Phys. Lett., 2003,82(14):2221-2223.
NETZEL C,BREMERS H,HOFFMANN L,et al.. Emission and recombination characteristics of Ga1-xInxN/GaN quantum well structures with nonradiative recombination suppression by V-shaped pits[J]. Phys. Rev. B, 2007,76(15):155322.
LI Y F,YUN F,SU X L,et al.. Deep hole injection assisted by large V-shape pits in InGaN/GaN multiple-quantum-wells blue light-emitting diodes[J]. J. Appl. Phys., 2014,116(12):123101-1-6.
KIM K S,HAN D P,KIM H S,et al.. Analysis of dominant carrier recombination mechanisms depending on injection current in InGaN green light emitting diodes[J]. Appl. Phys. Lett., 2014,104(9):091110.
GTZ W,JOHNSON N M,WALKER J,et al.. Activation of acceptors in Mg-doped GaN grown by metalorganic chemical vapor deposition[J]. Appl. Phys. Lett., 1996,68(5):667-669.
SCHUBERT E F. Light-emitting Diodes[M]. 2nd ed. New York:Cambridge University Press, 2006.
QI W J,ZHANG J L,MO C L,et al.. Effects of thickness ratio of InGaN to GaN in superlattice strain relief layer on the optoelectrical properties of InGaN-based green LEDs grown on Si substrates[J]. J. Appl. Phys., 2017,122(8):084504.
TAO X X,LIU J L,ZHANG J L,et al.. Performance enhancement of yellow InGaN-based multiple-quantum-well light-emitting diodes grown on Si substrates by optimizing the InGaN/GaN superlattice interlayer[J]. Opt. Mater. Express, 2018,8(5):1221-1230.
NIUN H,WANG H B,LIU J P,et al.. Enhanced luminescence of InGaN/GaN multiple quantum wells by strain reduction[J]. Solid-State Electron., 2007,51(6):860-864.