HU Yao-wen, GAO Jiang-dong, QUAN Zhi-jue etc. Dependence of Internal Quantum Efficiency of GaN-based Yellow LED with Si Substrate on Electron Blocking Layer with Variable Al Composition[J]. Chinese Journal of Luminescence, 2019,40(9): 1102-1107
HU Yao-wen, GAO Jiang-dong, QUAN Zhi-jue etc. Dependence of Internal Quantum Efficiency of GaN-based Yellow LED with Si Substrate on Electron Blocking Layer with Variable Al Composition[J]. Chinese Journal of Luminescence, 2019,40(9): 1102-1107 DOI: 10.3788/fgxb20194009.1102.
Dependence of Internal Quantum Efficiency of GaN-based Yellow LED with Si Substrate on Electron Blocking Layer with Variable Al Composition
This study was to investigate the dependence of internal quantum efficiency of GaN-based yellow light-emitting diodes(LEDs) with Si substrate on the Al composition of first electron blocking layer(EBL-1) in dual electron blocking layer design and the main physical mechanism of carrier injection. First
three samples were prepared by the technology of GaN-based yellow LEDs on silicon substrates with different flows of trimethyl aluminum(TMAl) during epitaxy. As a result
the Al composition in EBL-1 of the samples was about 20%
50% and 80%
respectively. Then
the actual tested internal quantum efficiency curves of these three samples were fitted by the semiconductor simulation software Silvaco Atlas. The results show that EBL-1 in dual electron blocking layer design has two main influences on the internal quantum efficiency. One is that EBL-1 with a higher Al composition allows more holes to be injected from the sidewall of the V-shaped pits into the multiple quantum wells
and the other is that excessive aluminum composition reduces the quality of p-type GaN layers
resulting in a decrease in the effective concentration of holes. As a comprehensive performance
the EBL-1 with about 50% Al composition is the most benefit in dual electron blocking layer design to the internal quantum efficiency of GaN-based yellow LEDs.
关键词
Keywords
references
冯思悦,梁静秋,梁中翥,等. LED微阵列投影系统设计[J]. 中国光学, 2019,12(1):88-96. FENG S Y,LIANG J Q,LIANG Z Z,et al.. Design of projection system for a micro-LED array[J]. Chin. Opt., 2019,12(1):88-96. (in Chinese)
金鹏,喻春雨,周奇峰,等. LED在道路照明中的光效优势[J]. 光学精密工程, 2011,19(1):51-55. JIN P,YU C Y,ZHOU Q F,et al.. Superior application of LED to street lighting[J]. Opt. Precision Eng., 2011,19(1):51-55. (in Chinese)
刘洪兴,孙景旭,刘则洵,等. 氙灯和发光二极管作光源的积分球太阳光谱模拟器[J]. 光学精密工程, 2012,20(7):1447-1454. LIU H X,SUN J X,LIU Z X,et al.. Design of integrating sphere solar spectrum simulator based on xenon lamp and LEDs[J]. Opt. Precision Eng., 2012,20(7):1447-1454. (in Chinese)
宋少华,仝召民. 用于激光背光源电视的扫描分光与消散斑系统[J]. 光学精密工程, 2019,27(2):271-278. SONG S H,TONG Z M. Scanning beam splitting and speckle reduction system for laser backlight TV[J]. Opt. Precision Eng., 2019,27(2):271-278. (in Chinese)
JIANG Y,LI Y F,LI Y Q,et al.. Realization of high-luminous-efficiency InGaN light-emitting diodes in the "green gap" range[J]. Sci. Rep., 2015,5:10883-1-7.
BOUR D P,TREAT D W,THORNTON R L,et al.. Drift leakage current in AlGaInP quantum-well lasers[J]. IEEE J. Quantum Electron.,1993,29(5):1337-1343.
VAITKEVⅡUS A,MICKEVⅡUS J,DOBROVOLSKAS D,et al.. Influence of quantum-confined Stark effect on optical properties within trench defects in InGaN quantum wells with different indium content[J]. J. Appl. Phys., 2014,115(21):213512.
DAVIES M J,HAMMERSLEY S,MASSABUAU F C P,et al.. A comparison of the optical properties of InGaN/GaN multiple quantum well structures grown with and without Si-doped InGaN prelayers[J]. J. Appl. Phys., 2016,119(5):055708-1-8.
MEYAARD D S,LIN G B,SHAN Q F,et al.. Asymmetry of carrier transport leading to efficiency droop in GaInN based light-emitting diodes[J]. Appl. Phys. Lett., 2011,99(25):251115-1-3.
LI C K,WU Y R. Study on the current spreading effect and light extraction enhancement of vertical GaN/InGaN LEDs[J]. IEEE Trans. Electron. Devices, 2012,59(2):400-407.
HAN S H,LEE D Y,LEE S J,et al.. Effect of electron blocking layer on efficiency droop in InGaN/GaN multiple quantum well light-emitting diodes[J]. Appl. Phys. Lett., 2009,94(23):231123-1-3.
QUAN Z J,WANG L,ZHENG C D,et al.. Roles of V-shaped pits on the improvement of quantum efficiency in InGaN/GaN multiple quantum well light-emitting diodes[J]. J. Appl. Phys., 2014,116(18):183107-1-5.
LI C K,WU C K,HSU C C,et al.. 3D numerical modeling of the carrier transport and radiative efficiency for InGaN/GaN light emitting diodes with V-shaped pits[J]. AIP Adv., 2016,6(5):055208-1-10.
JIANG F Y,ZHANG J L,XU L Q,et al.. Efficient InGaN-based yellow-light-emitting diodes[J]. Photon. Res., 2019,7(2):144-148.
SILVACO Inc. ATLAS[EB/OL].[2017-09-09]. http://www.Silvac.com.
ZHANG J L,XIONG C B,LIU J L,et al.. High brightness InGaN-based yellow light-emitting diodes with strain modulation layers grown on Si substrate[J]. Appl. Phys. A, 2014,114(4):1049-1053.
RYU H Y,LEE S H. Simulation of the effects of AlGaN electron-blocking layers on the characteristics of InGaN blue light-emitting diodes[J]. J. Korean Phys. Soc., 2012,61(9):1395-1399.
SHEN Y C,MUELLER G O,WATANABE S,et al.. Auger recombination in InGaN measured by photoluminescence[J]. Appl. Phys. Lett., 2007,91(14):141101-1-3.
CHEN J R,WU Y C,LING S C,et al.. Investigation of wavelength-dependent efficiency droop in InGaN light-emitting diodes[J]. Appl. Phys. B, 2010,98(4):779-789.
HAN S H,LEE D Y,SHIM H W,et al.. Improvement of efficiency and electrical properties using intentionally formed V-shaped pits in InGaN/GaN multiple quantum well light-emitting diodes[J]. Appl. Phys. Lett., 2013,102(25):251123-1-4.
WU X M,LIU J L,QUAN Z J,et al.. Electroluminescence from the sidewall quantum wells in the V-shaped pits of InGaN light emitting diodes[J]. Appl. Phys. Lett., 2014,104(22):221101-1-5.
LIN F,XIANG N,CHEN P,et al.. Investigation of the V-pit related morphological and optical properties of InGaN/GaN multiple quantum wells[J]. J. Appl. Phys., 2008,103(4):043508-1-5.
LAHOURCADE L,PERNOT J,WIRTHMLLER A,et al.. Mg doping and its effect on the semipolar GaN(1122) growth kinetics[J]. Appl. Phys. Lett., 2009,95(17):171908-1-3.
STRINGFELLOW G B. Organometallic Vapor-phase Epitaxy[M]. San Diego:Academic Press, 1989:349-353.