LI Shu, LIU Huang-qing, CHONG Gui-shu etc. Fano Resonances in Ag-Air-SiO<sub>2</sub> Nanostructure[J]. Chinese Journal of Luminescence, 2019,40(9): 1096-1101
LI Shu, LIU Huang-qing, CHONG Gui-shu etc. Fano Resonances in Ag-Air-SiO<sub>2</sub> Nanostructure[J]. Chinese Journal of Luminescence, 2019,40(9): 1096-1101 DOI: 10.3788/fgxb20194009.1096.
nanostructure were investigated by Finite-difference time-domain (FDTD). It could be observed a redshift with the growth of horizontal length
l
of silver film for the resonance peaks of the modes m
j
(
j
=2
3). Fano resonance was related with the Ag-Air-SiO
2
periodic structure and SiO
2
. The modes m
j
(
j
=2
3) presented a redshift and the Fano was becoming more and more obvious with the increment of transverse length
L
of SiO
2
. In addition
the Fano resonances were also closely related with the permittivity (negative value of the real part) of the silver film. The Fano resonances could be obtained when -
m
'=4 000 and -
m
'=6 000 in the aperiodic Ag-Air-SiO
2
structure.
关键词
Keywords
references
ZHANG J X,ZHANG L D,XU W. Surface plasmon polaritons:physics and applications[J]. J. Phys. D:Appl. Phys., 2012,45(11):113001-1-19.
MELENTEV G A,SHALYGIN V A,FIRSOV D A,et al.. Surface plasmon-phonon polaritons in GaAs[J]. J. Phys.:Conf. Ser., 2017,917(6):062038-1-5.
LIANG H W,RUAN S C,ZHANG M,et al.. Characteristics of modified surface plasmon polaritons on double-coated metal nanofilms[J]. Laser Phys. Lett., 2014,11(11):115003-1-5.
DIN R U,BADSHAH F,AHMAD I,et al.. Tunable surface plasmon polaritons at the surfaces of nanocomposite media[J]. EPL, 2018,122(1):17001.
NOUAL A,AKJOUJ A,PENNEC Y,et al.. Modeling of two-dimensional nanoscale Y-bent plasmonic waveguides with cavities for demultiplexing of the telecommunication wavelengths[J]. New J. Phys., 2009,11(10):103020-1-19.
IM S J,HO G S. Plasmonic amplification and suppression in nanowaveguide coupled to gain-assisted high-quality plasmon resonances[J]. Laser Phys. Lett., 2015,12(4):045902.
OTSUJI T,POPOV V,RYZHⅡ V. Active graphene plasmonics for terahertz device applications[J]. J. Phys. D:Appl. Phys., 2014,47(9):094006.
VYSHNEVYY A A,FEDYANIN D Y. Noise reduction in plasmonic amplifiers[J]. Appl. Phys. Express, 2018,11(6):062002-1-4.
CAO L D,ZHANG Y. Light controlled surface plasmon polaritons switch based on a gradient metal grating[J]. Opt. Commun., 2018,424:103-106.
APOSTOLOVA T,OBRESHKOV B D,IONIN A A,et al.. Ultrafast photoionization and excitation of surface-plasmon-polaritons on diamond surfaces[J]. Appl. Surf. Sci., 2018,427:334-343.
OLIVARES J A,GALVN-MIYOSHI J M,GARCA-VALENZUELA A,et al.. Fano-type resonances in the reflectance spectra from dense colloidal films[J]. Opt. Commun., 2015,356:175-181.
SADEGHI S,Hamidi S M. Enhanced Faraday rotation in one dimensional magneto-plasmonic structure due to Fano resonance[J]. J. Magn. Magn. Mater., 2018,451:305-310.
YANG W X,MA W H,YANG L,et al.. Phase control of group velocity via Fano-type interference in a triple semiconductor quantum well[J]. Opt. Commun., 2014,324:221-226.
DOTAN I E,SCHEUER J. Fano resonances in vertically and horizontally coupled micro-resonators[J]. Opt. Commun., 2012,285(16):3475-3482.
ZHENG G G,ZOU X J,CHEN Y Y,et al.. Fano resonance in graphene-MoS2 heterostructure-based surface plasmon resonance biosensor and its potential applications[J]. Opt. Mater., 2017,66:171-178.
PANARO S,DE ANGELIS F,TOMA A. Dark and bright mode hybridization:from electric to magnetic Fano resonances[J]. Opt. Lasers Eng., 2016,76:64-69.
CAO M Y,WANG H F,LI L. Dynamically adjusting plasmon-induced transparency and slow light based on graphene meta-surface by bright-dark mode coupling[J]. Phys. Lett. A, 2018,382(30):1978-1981.
PANG S F,HUO Y P,XIE Y,et al.. Fano resonance in MIM waveguide structure with oblique rectangular cavity and its application in sensor[J]. Opt. Commun., 2016,381:409-413.
COLLABORATION C M S,CHATRCHYAN S,KHACHATRYAN V,et al.. Search for resonances in the dijet mass spectrum from 7 TeV pp collisions at CMS[J]. Phys. Lett. B, 2011,704(3):123-142.
SNDERGAARD T,BOZHEVOLNYI S I. Strip and gap plasmon polariton optical resonators[J]. Phys. Stattus Solidi (B),2008,245(1):9-19.
LI S,XIAO S F,ZHAI X,et al.. Investigation of surface plasmon resonance in the rectangular cavity of Ag-Si-SiO2[J]. Plasmonics, 2018,13(6):2313-2318.
LI S,LIU H Q,LIU L H,et al.. Effect of silver film thickness on the surface plasma resonance in the rectangular Ag-Si-SiO2 cavity[J]. J. Phys. Commun., 2018,2(5):055024-1-10.
向东. 亚波长金属光栅与等离子波导的光传输特性研究[D]. 长沙:湖南大学, 2012:5. XIANG D. Research on Optical Transmission Characteristics of Subwavelength Metallic Gratings and Plasmonic Waveguedes[D]. Changsha:Hunan University, 2012:5. (in Chinese)
钟顺时,钮茂德. 电磁场理论基础[M]. 西安:西安电子科技大学出版社, 1995:198. ZHONG S S,NIU M D. Theoretical Basis of Electromagnetic Field[M]. Xi'an:Xidian University Press, 1995:198. (in Chinese)
LI H J,WANG L L,ZHANG H,et al.. Graphene-based mid-infrared,tunable,electrically controlled plasmonic filter[J]. Appl. Phys. Express, 2014,7(2):024301-1-4.
SHARMA N,JOY A,MISHRA A K,et al.. Fuchs Sondheimer-Drude Lorentz model and Drude model in the study of SPR based optical sensors:a theoretical study[J]. Opt. Commun., 2015,357:120-126.
GMEZ-AGUILAR J F. Novel analytical solutions of the fractional Drude model[J]. Optik, 2018,168:728-740.
GERALDO V,SCALVI L V A,LISBOA-FILHO P N,et al.. Drude's model calculation rule on electrical transport in Sb-doped SnO2 thin films,deposited via sol-gel[J]. J. Phys. Chem. Solids, 2006,67(7):1410-1415.
JIANG S M,XIE Q Y,WU D J. Plasmon-exciton induced transparency in plexcitonic Ag-CuCl-coated nanowires and associated arrays[J]. Appl. Phys. B, 2015,119(2):355-361.