LI Lei, CHEN Xiao-dong, YUAN Cheng-xun etc. Emission Spectrum Diagnose to Ar Plasma Jet[J]. Chinese Journal of Luminescence, 2019,40(8): 1049-1054 DOI: 10.3788/fgxb20194008.1049.
In order to deeply understand the mechanism of Ar plasma jet under atmospheric pressure and the state of internal electron
the emission spectrum diagnosis of Ar plasma jet was carried out. The electron excitation temperature was calculated by Boltzmann slope method
and the electron density was calculated by the continuous spectral absolute intensity method of emission spectrum. The effect of argon pressure and discharge power on electron excitation temperature and electron density of Ar plasma jet was studied by designing a metal needle-ring dielectric barrier discharge device with adjustable air pressure. The results show that with increased pressure from 6 kPa to 16 kPa
electron excitation temperature reduced from 0.83 eV to 0.68 eV
electron density from 4.4510
22
m
-3
to 0.4410
22
m
-3
and with increased discharge power from 0.177 5 W to 1.792 6 W
electron excitation temperature increased from 0.82 eV to 5.14 eV
electron density increased from 0.2710
22
m
-3
to 4.6110
22
m
-3
and when the electron density is lower
electron excitation temperature change is more obvious. It is concluded that argon pressure and discharge power not only have direct effects on the electron excitation temperature
but also have indirect effects caused by the change of electron density. When the electron density is low
the influence of argon pressure and discharge power on the electron excitation temperature will be relatively greater. At the same time
the results of electron density calculated by using two wavelengths are very close
which verifies the accuracy of the diagnosis results.
关键词
Keywords
references
SCHUTZE A,JEONG J Y,BABAYAN S E,et al.. The atmospheric-pressure plasma jet:a review and comparison to other plasma sources[J]. IEEE Trans. Plasma Sci., 1998,26(6):1685-1694.
STOFFELS E,FLIKWEERT A J,STOFFELS W W,et al.. Plasma needle:a non-destructive atmospheric plasma source for fine surface treatment of (bio) materials[J]. Plasma Sources Sci. Technol., 2002,11(4):383-388.
SOSNIN E A,STOFFELS E,EROFEEV M V,et al.. The effects of UV irradiation and gas plasma treatment on living mammalian cells and bacteria:a comparative approach[J]. IEEE Trans. Plasma Sci., 2004,32(4):1544-1550.
KIEFT I E,KURDI M,STOFFELS E. Reattachment and apoptosis after plasma-needle treatment of cultured cells[J]. IEEE Trans. Plasma Sci., 2006,34(4):1331-1336.
TESCHKE M,KEDZIERSKI J,FINANTU-DINU E G,et al.. High-speed photographs of a dielectric barrier atmospheric pressure plasma jet[J]. IEEE Trans. Plasma Sci., 2005,33(2):310-311.
LU X P,LAROUSSI M. Dynamics of an atmospheric pressure plasma plume generated by submicrosecond voltage pulses[J]. J. Appl. Phys., 2006,100(6):063302-1-6.
董丽芳,李永辉. 大气压氩气射流等离子体放电发展速度研究[J]. 发光学报, 2014,35(4):476-480. DONG L F,LI Y H. Propagation velocity in hollow needle to plate discharge[J]. Chin. J. Lumin., 2014,35(4):476-480. (in Chinese)
李永辉,董丽芳,甘延标. 超长射流等离子体在介质管内的传播机制[J]. 发光学报, 2016,37(5):597-602. LI Y H,DONG L F,GAN Y B. Propagation mechanism of super long plasma jet in the dielectric tube[J]. Chin. J. Lumin., 2016,37(5):597-602. (in Chinese)
SANDS B L,LEIWEKE R J,GANGULY B N. Spatiotemporally resolved Ar (1s5) metastable measurements in a streamer-like He/Ar atmospheric pressure plasma jet[J]. J. Phys. D:Appl. Phys., 2010,43(28):282001-1-5.
MERICAM-BOURDET N,LAROUSSI M,BEGUM A,et al.. Experimental investigations of plasma bullets[J]. J. Phys. D:Appl. Phys., 2009,42(5):055207.
MOTRET O,HIBERT C,PELLERIN S,et al.. Rotational temperature measurements in atmospheric pulsed dielectric barrier discharge-gas temperature and molecular fraction effects[J]. J. Phys. D:Appl. Phys., 2000,33(12):1493-1498.
IORDANOVA E,PALOMARES J M,GAMERO A,et al.. A novel method to determine the electron temperature and density from the absolute intensity of line and continuum emission:application to atmospheric microwave induced Ar plasmas[J]. J. Phys. D:Appl. Phys., 2009,42(15):155208-1-12.
SARANI A,NIKIFOROVA Y,LEYS C. Atmospheric pressure plasma jet in Ar and Ar/H2O mixtures:optical emission spectroscopy and temperature measurements[J]. Phys. Plasmas, 2010,17(6):063504-1-8.
唐蕾,王永杰,袁春琪,等. 三种电极的大气压氩等离子体射流光学特性[J]. 发光学报, 2018,39(4):547-554. TANG L,WANG Y J,YUAN C Q,et al.. Optical property of the atmospheric pressure argon plasma jet generated by three types of electrodes[J]. Chin. J. Lumin., 2018,39(4):547-554. (in Chinese)
NIERMANN B,BKE M,SADEGHI N,et al.. Space resolved density measurements of argon and helium metastable atoms in radio-frequency generated He-Ar micro-plasmas[J]. Eur. Phys. J. D, 2010,60(3):489-495.
PIPA A V,BINDEMANN T,FOEST R,et al.. Absolute production rate measurements of nitric oxide by an atmospheric pressure plasma jet (APPJ)[J]. J. Phys. D:Appl. Phys., 2008,41(19):194011-1-7.
STANCU G D,KADDOURI F,LACOSTE D A,et al.. Atmospheric pressure plasma diagnostics by OES,CRDS and TALIF[J]. J. Phys. D:Appl. Phys., 2010,43(12):124002-1-10.
MILLOY H B,CROMPTON R W,REES J A,et al.. The momentum transfer cross section for electrons in argon in the energy range 0-4 eV[J]. Aust. J. Phys., 1977,30(1):61-72.
PHELPS A V,PETROVIC Z L. Cold-cathode discharges and breakdown in argon:surface and gas phase production of secondary electrons[J]. Plasma Sources Sci. Technol., 1999,8(3):R21-R44.