LEI Xiao-xiao, YE Yun, LIN Nan etc. Effect of Viscosity on Droplet Volume During Inkjet Printing[J]. Chinese Journal of Luminescence, 2019,40(8): 1040-1048
LEI Xiao-xiao, YE Yun, LIN Nan etc. Effect of Viscosity on Droplet Volume During Inkjet Printing[J]. Chinese Journal of Luminescence, 2019,40(8): 1040-1048 DOI: 10.3788/fgxb20194008.1040.
Effect of Viscosity on Droplet Volume During Inkjet Printing
Drop volume is important for quantitative printing
while ink viscosity has an important influence on droplet volume. First
a nozzle model was proposed based on laminar flow-level set method. The ejection processes of droplet with different viscosity at different moments were demonstrated
under the condition that the ink density is 1.0 g/mL
the surface tension is 28 mN/m
and the viscosity is 1-15 mPas
and the negative correlation between the droplet volume and viscosity of ink was obtained. Then
the droplet volume was quantified through the integration of the level-set function
and the variation range is 58.10-37.29 pL; and a negative linear relationship between the volume of droplet and the ink viscosity was obtained by linear fitting
specifically
"
A
=-1.54"
"
B
=60.2". Secondly
the printing experiment was carried out by the printing of polythiol ink under the same physical parameters
and the variation range of droplet volume was 149.9-92.9 pL
and the specific fitting relationship between the droplet volume and the ink viscosity was still a negative linear relationship:"
A
'=-4.12"
"
B
'=154.71"
which proved the simulation result. And the results of simulation and experiment show that there is a coefficient "
h=
2.5" between the linear function of them
and coefficient "
h
" was proven to be independent of the type of ink
but to be determined by the inlet pressure through the further simulation research. This study can help to simplify the quantitative printing process of any type of ink with a lower viscosity.
关键词
Keywords
references
崔铮. 印刷电子发展回顾与展望[J]. 科技导报, 2017,35(17):14-20. CUI Z. Printed electronics:past,present and future[J]. Sci. Technol. Rev., 2017,35(17):14-20. (in Chinese)
宁洪龙,杨财桂,陈建秋,等. 喷墨打印电极在薄膜晶体管中的应用[J]. 材料导报, 2018,32(5):742-748. NING H L,YANG C G,CHEN J Q,et al.. Application of electrode inkjet printing in thin film transistors[J]. Mater. Rev., 2018,32(5):742-748. (in Chinese)
林杨鸣,曲轶,于新红,等. 喷墨打印聚合物薄膜均匀性调控研究进展[J]. 应用化学, 2018,35(2):129-136. LIN Y M,QU Y,YU X H,et al.. Research progress on modulation of film thickness uniformity of polymer films by inkjet printing[J]. Chin. J. Appl. Chem., 2018,35(2):129-136. (in Chinese)
肖渊,刘金玲,吴姗,等. 纸基RFID标签天线喷射打印化学反应沉积成形[J]. 光学精密工程, 2017,25(3):689-696. XIAO Y,LIU J L,WU S,et al.. Fabrication of paper-based RFID tag antennas using jet printing and chemical deposition[J]. Opt. Precision Eng., 2017,25(3):689-696. (in Chinese)
LI K,LIU J K,CHEN W S,et al.. Controllable printing droplets on demand by piezoelectric inkjet:applications and methods[J]. Microsyst. Technol., 2018,24(2):879-889.
熊贤风,元淼,林广庆,等. 基于聚(4-乙烯基苯酚)衬底修饰层喷墨打印的小分子有机半导体薄膜制备和表征[J]. 发光学报, 2014,35(1):105-112. XIONG X F,YUAN M,LIN G Q,et al.. Preparation and characterization of inkjet-printed small-molecule organic semiconductor thin films based on a surface modification layer of poly(4-vinylphenol)[J]. Chin. J. Lumin., 2014,35(1):105-112. (in Chinese)
TEKIN E,SMITH P J,SCHUBERT U S. Inkjet printing as a deposition and patterning tool for polymers and inorganic particles[J]. Soft Matter, 2008,4(4):703-713.
FROMM J E. Numerical calculation of the fluid dynamics of drop-on-demand jets[J]. IBM J. Res. Dev., 1984,28(3):322-333.
HOMENICK C M,JAMES R,LOPINSKI G P,et al.. Fully printed and encapsulated SWCNT-based thin film transistors via a combination of R2R gravure and inkjet printing[J]. ACS Appl. Mater. Interfaces, 2016,8(41):27900-27910.
DU Z H,XING R B,CAO X X,et al.. Symmetric and uniform coalescence of ink-jetting printed polyfluorene ink drops by controlling the droplet spacing distance and ink surface tension/viscosity ratio[J]. Polymer, 2017,115:45-51.
HOATH S D,VADILLO D C,HARLEN O G,et al.. Inkjet printing of weakly elastic polymer solutions[J]. J. Non-Newton. Fluid Mech., 2014,205:1-10.
ZHAN H W,XU F,NI Z J. Fluid dynamic modeling and fuzzy proportional-integral-derivative-based ink-supply method for piezoelectric ink-jet printing[J]. Adv. Mech. Eng., 2017,9(7),doi:10.1177/1687814017718981.
BOGY D B,TALKE F E. Experimental and theoretical study of wave propagation phenomena in drop-on-demand ink jet devices[J]. IBM J. Res. Dev., 1984,28(3):314-321.
宁洪龙,朱镇南,陶瑞强,等. 压电波形对喷墨打印电极的调控规律[J]. 发光学报, 2017,38(5):617-622. NING H L,ZHU Z N,TAO R Q,et al.. Regulation rules of piezoelectric waveform on ink-jet printing electrode[J]. Chin. J. Lumin., 2017,38(5):617-622. (in Chinese)
HE B,YANG S C,QIN Z R,et al.. The roles of wettability and surface tension in droplet formation during inkjet printing[J]. Sci. Rep., 2017,7(1):11841-1-7.
LIANG J J,LI L,NIU X F,et al.. Elastomeric polymer light-emitting devices and displays[J]. Nat. Photon., 2013,7(10):817-824.
SHIRASAKI Y,SUPRAN G J,BAWENDI M G,et al.. Emergence of colloidal quantum-dot light-emitting technologies[J]. Nat. Photon., 2013,7(1):13-23.
LIU Y,LI F S,XU Z W,et al.. Efficient all-solution processed quantum dot light emitting diodes based on inkjet printing technique[J]. ACS Appl. Mater. Interfaces, 2017,9(30):25506-25512.
MORRISON N F,HARLEN O G. Viscoelasticity in inkjet printing[J]. Rheol. Acta, 2010,49(6):619-632.
REIS N,AINSLEY C,DERBY B. Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors[J]. J. Appl. Phys., 2005,97(9):094903-1-6.
周剑宏,童宝宏,王伟,等. 油滴撞击油膜层内气泡的变形与破裂过程的数值模拟[J]. 物理学报, 2018,67(11):114701-1-12. ZHOU J H,TONG B H,WANG W,et al.. Numerical simulation of deformation and rupture process of bubble in an oil film impacted by an oil droplet[J]. Acta Phys. Sinica, 2018,67(11):114701-1-12. (in Chinese)
SAUREL R,PANTANO C. Diffuse-interface capturing methods for compressible two-phase flows[J]. Annu. Rev. Fluid Mech., 2018,50:105-130.
ZHANG H Y,WANG J,LU G D. Numerical investigation of the influence of companion drops on drop-on-demand ink jetting[J]. J. Zhejiang Univ. Sci. A:Appl. Phys. Eng., 2012,13(8):584-595.
OLSSON E,KREISS G. A conservative level set method for two phase flow[J]. J. Comput. Phys., 2005,210(1):225-246.