NIU Chun-hui, ZHU Ting, LANG Xiao-ping. Luminescence Performance of Dy<sup>3+</sup> Doped YNbO<sub>4</sub> Microcrystalline Powder[J]. Chinese Journal of Luminescence, 2019,40(6): 758-765
doping concentration were synthesized by the conventional solid-state reaction at 1 300℃ and duration of 2 h. Their X-ray diffraction patterns were examined and the results confirmed the formation of single phase crystalline structure of YNbO
4
. Their absorption spectra were measured through combination of a scattering integral sphere and a fiber spectrometer
and in consequence
spectrum intensity parameters(
2
4
and
6
)
experimental and theoretical oscillator intensities of YNbO
4
:Dy
3+
were calculated through Judd-Ofelt theory. Excitation spectra with emission peak at 577 nm were recorded and the results illustrated that there were an excitation peak near 260 nm due to absorption of crystalline lattice of YNbO
4
and several excitation peaks originated from 4f-4f transition of Dy
3+
ions. Emission spectra excited at 270 nm and 360 nm were also measured and basically identical emission spectra were observed. Concentration quenching phenomenon of Dy
3+
ion's luminescence was discovered by comparing emission spectrum of different Dy
3+
doping concentration. Analytic results according to energy transfer theory indicated that concentration quenching mechanism in Dy
3+
ions belonged to dipole-dipole interaction. At last
CIE color coordinates of the prepared samples were also calculated and color parameters with nearest distance to white light region were (0.219
0.166).
关键词
Keywords
references
HUIGNARD A, BUISSETTE V, FRANVILLE A C, et al.. Emission processes in YVO4:Eu Nanoparticles[J]. J. Phys. Chem. B, 2003, 107(28):6754-6759.
DI W H, WANG X J, CHEN B J, et al.. Preparation, characterization and VUV luminescence property of YPO4:Tb phosphor for a PDP[J]. Opt. Mater., 2005, 27(8):1386-1390.
MEYSSAMY H, RIWOTZKI K, KORNOWSKI A, et al.. Wet-chemical synthesis of doped colloidal nanomaterials:particles and fibers of LaPO4:Eu, LaPO4:Ce, and LaPO4:Ce, Tb[J]. Adv. Mater., 1999, 11(10):840-844.
RIWOTZKI K, MEYSSAMY H, KORNOWSKI A, et al.. Liquid-phase synthesis of doped nanoparticles:colloids of luminescing LaPO4:Eu and CePO4:Tb particles with a narrow particle size distribution[J]. J. Phys. Chem. B, 2000, 104(13):2824-2828.
YAN B, SU X Q. LuVO4:RE3+(RE=Sm, Eu, Dy, Er) phosphors by in-situ chemical precipitation construction of hybrid precursors[J]. Opt. Mater., 2007, 29(5):547-551.
ARELLANO I, NAZAROV M, BYEON C C, et al.. Luminescence and structural properties of Y(Ta, Nb)O4:Eu3+, Tb3+ phosphors[J]. Mater. Chem. Phys., 2010, 119(1-2):48-51.
YAMAGUCHIO, MATSUI K, KAWABE T, et al.. Crystallization and transformation of distorted tetragonal YNbO4[J]. J. Am. Ceram. Soc., 1985, 68(10):C-275-C-276.
JEHNG J M, WACHS I E. Structural chemistry and Raman spectra of niobium oxides[J]. Chem. Mater., 1991, 3(1):100-107.
BUTH A H, BLASSE G. Luminescence and energy transfer in yttrium niobate (YNbO4)[J]. Phys. Status Solidi A, 1981, 64(2):669-676.
HIRANO M, DOZONO H. Direct formation and luminescence properties of yttrium niobate YNbO4 nanocrystals via hydrothermal method[J]. J. Am. Ceram. Soc., 2013, 96(11):3389-3393.
XIAO X Z, YAN B. Synthesis and luminescent properties of novel RENbO4:Ln3+(RE=Y, Gd, Lu; Ln=Eu, Tb) micro-crystalline phosphors[J]. J. Non-Cryst. Solids, 2005, 351(46-48):3634-3639.
DA?ANIN L R, LUKI?-PETROVI? S R, PETROVI? D M, et al.. Temperature quenching of luminescence emission in Eu3+-and Sm3+-doped YNbO4 powders[J]. J. Lumin., 2014, 151:82-87.
CHEN X B, SALAMO G J, LI S, et al.. Two-photon, three-photon, and four-photon excellent near-infrared quantum cutting luminescence of Tm3+ ion activator emerged in Tm3+:YNbO4 powder phosphor one material simultaneously[J]. Phys. B:Condens. Matter, 2015, 479:159-164.
YAN B, XIAO X Z. Novel YNbO4:RE3+(RE=Sm, Dy, Er) microcrystalline phosphors:chemical co-precipitation synthesis from hybrid precursor and photoluminescent properties[J]. J. Alloys Compd., 2007, 433(1-2):251-255.
ZHOU Y Y, MA Q, L M K et al.. Combustion synthesis and photoluminescence properties of YNbO4-based nanophosphors[J]. J. Phys. Chem. C, 2008, 112(50):19901-19907.
HIRANO M, ISHIKAWA K. Intense up-conversion luminescence of Er3+/Yb3+ co-doped YNbO4 through hydrothermal route[J]. J. Photochem. Photobiol. A:Chem., 2016, 316:88-94.
JUDD B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962, 127(3):750-761.
OFELT G S. Intensities of crystal spectra of rare-earth ions[J]. J. Chem. Phys., 1962, 37(3):511-520.
LOIKO P A, DYMSHITS O S, ALEKSEEVA I P, et al.. Transparent glass-ceramics with (Eu3+, Yb3+):YNbO4 nanocrystals:crystallization, structure, optical spectroscopy and cooperative upconversion[J]. J. Lumin., 2016, 179:64-73.
NIU C H, LI L W, LI X Y, et al.. Upconversion photoluminescence properties of Ho3+/Yb3+ co-doped YNbO4 powder[J]. Opt. Mater., 2018, 75:68-73.
张思远. 稀土离子的光谱学光谱性质和光谱型论[M]. 北京:科学出版社, 2008. ZHANG S Y. Spectroscopy of Rare Earth Ions:Spectral Properties and Spectral Theory[M]. Beijing:Science Press, 2008. (in Chinese)
FLREZ A, JEREZ V A, FLREZ M. Optical transitions probabilities of Dy3+ ions in fluoroindate glass[J]. J. Alloys Compd., 2000, 303-304:355-359.
COURROL L C, TARELHO L V G, GOMES L, et al.. Time dependence and energy-transfer mechanisms in Tm3+, Ho3+ and Tm3+-Ho3+ co-doped alkali niobium tellurite glasses sensitized by Yb3+[J]. J. Non-Cryst. Solids, 2001, 284(1-3):217-222.
CHOI Y G, CHO D H, KIM K H. Influence of 4f absorption transitions of Dy3+ on the emission spectra of Tm3+-doped tellurite glasses[J]. J. Non-Cryst. Solids, 2000, 276(1-3):1-7.
侯嫣嫣, 杨红侠, 林海, 等.稀土硼酸盐玻璃中三价镝离子的光谱分析[J].中国稀土学报, 2005, 23(6):704-707. HOU Y Y, YANG H X, LIN H, et al.. Optics and spectral investigation in Dy3+-doped borate glasses[J]. J. Chin. Rare Earth Soc., 2005, 23(6):704-707. (in Chinese)
HIRANO M, DOZONO H. Hydrothermal formation and characteristics of rare-earth niobate phosphors and solid solutions between YNbO4 and TbNbO4[J]. Mater. Chem. Phys., 2014, 143(2):860-866.
DEXTER D L. A theory of sensitized luminescence in solids[J]. J. Chem. Phys., 1953, 21(5):836-850.
PORRS L, HOLLAND A, PLSSON L O, et al.. Absolute measurements of photoluminescence quantum yields of solutions using an integrating sphere[J]. J. Fluoresc., 2006, 16(2):267-272.