Charge Generation Ability of C60/CuPc Organic Heterojunction Connector Layer
Device Fabrication and Physics|更新时间:2020-08-12
|
Charge Generation Ability of C60/CuPc Organic Heterojunction Connector Layer
Chinese Journal of LuminescenceVol. 40, Issue 5, Pages: 643-649(2019)
作者机构:
1. 天水师范学院 物理系,甘肃 天水,741000
2. 衡阳师范学院 物理与电子工程学院, 湖南 衡阳 421002
作者简介:
基金信息:
Supported by National Natural Science Foundation of China(61665010,11464040,11764035);Natural Science Foundation of Gansu Province(18JR3RE242,1506RJZE112,1606RJZE012);Research Project of Graduate Teacher of Gansu Province(2015B-103);Scientific Research Fund of Hunan Provincial Education Department(15B033);Hunan Provincial Natural Science Foundation(2018JJ3010);"QinLan"Talent Engineering Fund by Tianshui Normal University
LU Fei-ping, DENG Yan-hong, SHI Ying-long etc. Charge Generation Ability of C<sub>60</sub>/CuPc Organic Heterojunction Connector Layer[J]. Chinese Journal of Luminescence, 2019,40(5): 643-649
LU Fei-ping, DENG Yan-hong, SHI Ying-long etc. Charge Generation Ability of C<sub>60</sub>/CuPc Organic Heterojunction Connector Layer[J]. Chinese Journal of Luminescence, 2019,40(5): 643-649 DOI: 10.3788/fgxb20194005.0643.
Charge Generation Ability of C60/CuPc Organic Heterojunction Connector Layer
Organic heterojunction connector(OHC) layers were widely used in tandem organic light emitting diodes(OLEDs) for their good light transmittance and technological compatibility with OLEDs. In a tandem OLED
the OHC layers
serving as the charge generation layer
played an important role in tandem OLEDs to function efficiently. In order to obtain the OHC layers with best performance
the devices with the structure of glass/ITO/tris(8-hydroxyquinoline) aluminum (Alq
3
)(60 nm)/C
60
(
x
nm)/CuPc(
y
nm)/N
N'-bis(naphthalen-1-yl)-N
N'-bis(phenyl)-be-nzidine (NPB)(40 nm)/Al(100 nm) were fabricated. The current density-voltage characteristic of the fabricated devices revealed that the OHC layer with the structure of C
60
/CuPc can generate charge carriers effectively
and show the largest charge carrier generation ability with the structure of C
60
(30 nm)/CuPc(10 nm). The forming physical mechanism of optimized OHC layer was reasonably explained. The results obtained in this paper can present an in-depth understanding of the working mechanism of tandem OLED and help ones fabricate high efficiency OLED.
关键词
Keywords
references
REINEKE S,LINDNER F,SCHWARTZ G,et al.. White organic light-emitting diodes with fluorescent tube efficiency[J]. Nature, 2009,459(7244):234-238.
LIN T A,CHATTERJEE T,TSAI W L,et al.. Sky-blue organic light emitting diode with 37% external quantum efficiency using thermally activated delayed fluorescence from spiroacridine-triazine hybrid[J]. Adv. Mater., 2016,28(32):6976-6983.
XU R P,LI Y Q,TANG J X. Recent advances in flexible organic light-emitting diodes[J]. J. Mater. Chem. C, 2016,4(39):9116-9142.
VAN SLYKE S A,CHEN C H,TANG C W. Organic electroluminescent devices with improved stability[J]. Appl. Phys. Lett., 1996,69(15):2160-2162.
MLADENOVSKI S,NEYTS K,PAVICIC D,et al.. Exceptionally efficient organic light emitting devices using high refractive index substrates[J]. Opt. Express, 2009,17(9):7562-7570.
SMITH L H,WASEY J A E,BARNES W L. Light outcoupling efficiency of top-emitting organic light-emitting diodes[J]. Appl. Phys. Lett., 2004,84(16):2986-2988.
WANG Q,DENG Z Q,CHEN J S,et al.. Realization of blue,green,and white inverted microcavity top-emitting organic light-emitting devices based on the same emitting layer[J]. Opt. Lett., 2010,35(4):462-464.
WANG Q,DENG Z Q,MA D G. Highly efficient inverted top-emitting organic light-emitting diodes using a lead monoxide electron injection layer[J]. Opt. Express, 2009,17(20):17269-17278.
DODABALAPUR A,ROTHBERG L J,JORDAN R H,et al.. Physics and applications of organic microcavity light emitting diodes[J]. J. Appl. Phys., 1996,80(12):6954-6964.
MLLER S,FORREST S R. Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays[J]. J. Appl. Phys., 2002,91(5):3324-3327.
SUN Y R,FORREST S R. Enhanced light out-coupling of organic light-emitting devices using embedded low-index grids[J]. Nat. Photon., 2008,2(8):483-487.
KIM Y C,CHO S H,SONG Y W,et al.. Planarized SiNx/spin-on-glass photonic crystal organic light-emitting diodes[J]. Appl. Phys. Lett., 2006,89(17):173502-1-3.
CHANG C C,HWANG S W,CHEN C H,et al.. High-efficiency organic electroluminescent device with multiple emitting units[J]. Jpn. J. Appl. Phys., 2004,43(9A):6418-6421.
KANNO H,HOLMES R J,SUN Y,et al.. White stacked electrophosphorescent organic light-emitting devices employing MoO3 as a charge-generation layer[J]. Adv. Mater., 2006,18(3):339-342.
CHANG CC,CHEN J F,HWANG S W,et al.. Highly efficient white organic electroluminescent devices based on tandem architecture[J]. Appl. Phys. Lett., 2005,87(25):253501-1-3.
CHO T Y,LIN C L,WU C C. Microcavity two-unit tandem organic light-emitting devices having a high efficiency[J]. Appl. Phys. Lett., 2006,88(11):111106-1-3.
LIAO L S,KLUBEK K P,TANG C W. High-efficiency tandem organic light-emitting diodes[J]. Appl. Phys. Lett., 2004,84(2):167-169.
LAW C W,LAU K M,FUNG M K,et al.. Effective organic-based connection unit for stacked organic light-emitting devices[J]. Appl. Phys. Lett., 2006,89(13):133511-1-3.
GUO F W,MA D G. White organic light-emitting diodes based on tandem structures[J]. Appl. Phys. Lett., 2005,87(17):173510-1-3.
KANG S J,YI Y,KIM C Y,et al.. Energy level diagrams of C60/pentacene/Au and pentacene/C60/Au[J]. Synth. Met., 2006,156(1):32-37.
ZHANG H M,DAI Y F,MA D G. Al/WO3/Au as the interconnecting layer for efficient tandem white organic light-emitting diodes[J]. J. Phys. D:Appl. Phys., 2008,41(10):102006-1-4.
SUN J X,ZHU X L,PENG H J,et al.. Effective intermediate layers for highly efficient stacked organic light-emitting devices[J]. Appl. Phys. Lett., 2005,87(9):093504-1-3.
XIAO J,WANG X X,ZHU H,et al.. Efficiency enhancement utilizing hybrid charge generation layer in tandem organic light-emitting diodes[J]. Appl. Phys. Lett., 2012,101(1):013301-1-4.
YANG J P,BAO Q Y,XIAO Y,et al.. Hybrid intermediate connector for tandem OLEDs with the combination of MoO3-based interlayer and p-type doping[J]. Org. Electron., 2012,13(11):2243-2249.
WEN X M,YIN Y M,LI Y,et al.. Tandem white organic light-emitting device using non-modified Ag layer as cathode and interconnecting layer[J]. Org. Electron., 2014,15(3):675-679.
SUN H D,GUO Q X,YANG D Z,et al.. High efficiency tandem organic light emitting diode using an organic heterojunction as the charge generation layer:an investigation into the charge generation model and device performance[J]. ACS Photon., 2015,2(2):271-279.
GUO Q X,SUN H D,WANG J X,et al.. Charge generation mechanism of tandem organic light emitting diodes with pentacene/C70 organic heterojunction as the connecting layer[J]. J. Mater. Chem. C, 2016,4(2):376-382.
ZHU X L. Electrode Investigation of Organic Light-emitting Diodes for Display Applications[D]. Hong Kong,China:Hong Kong University of Science and Technology, 2008.
ZHOU Y C,LIU Z T,TANG J X,et al.. Substrate dependence of energy level alignment at the donor-acceptor interface in organic photovoltaic devices[J]. J. Electron Spectrosc. Relat. Phenom., 2009,174(1-3):35-39.
CHEN Y H,MA D G. Organic semiconductor heterojunctions as charge generation layers and their application in tandem organic light-emitting diodes for high power efficiency[J]. J. Mater. Chem., 2012,22(36):18718-18734.
CHEN Y H,CHEN J S,MA D G,et al.. High power efficiency tandem organic light-emitting diodes based on bulk heterojunction organic bipolar charge generation layer[J]. Appl. Phys. Lett., 2011,98(24):243309-1-3.
CHEN Y H,CHEN J S,MA D G,et al.. Tandem white phosphorescent organic light-emitting diodes based on interface-modified C60/pentacene organic heterojunction as charge generation layer[J]. Appl. Phys. Lett., 2011,99(10):103304-1-3.
CHU T Y,SONG O K. Hole mobility of N,N'-bis(naphthalen-1-yl)-N,N'-bis(phenyl) benzidine investigated by using space-charge-limited currents[J]. Appl. Phys. Lett., 2007,90(20):203512-1-3.
LU F P,LIU X B,XING Y Z. Numerical study of the influence of applied voltage on the current balance factor of single layer organic light-emitting diodes[J]. J. Appl. Phys., 2014,115(16):164508-1-6.
LU F P,PENG Y Q,XING Y Z. Numerical model of tandem organic light-emitting diodes based on a transition metal oxide interconnector layer[J]. J. Semicond., 2014,35(4):044005-1-9.
Progress on Structure Optimization of GaN Based Schottky Diode
Highly Efficient Red Electrophosphorescent Devices Based on 7-(9H-carbazol-9-yl)-N,N-diphenyl-9,9’-spirobi[fluoren]-2-amine Host Material
The Electroluminescent Performance of OLED Based on Different Hole Transport Layer
Effect of TCTA Layer on Exciton Positions of Red and Green Phosphorescent Organic Light Emitting Diodes
Green and Bluish-green Phosphorescent OLEDs with High Efficiency at High Brightness
Related Author
LEI Liang
CHEN Yan-fang
GUO Wei-ling
WU Yue-fang
TIAN Mi
HE Hai-xiao
ZHANG Hong-ke
ZHAO Wei-hua
Related Institution
Key Laboratory of Opto-electionics Technology, Ministry of Education, Beijing University of Technology, Beijing 100124, China
Xi'an Ruilian Modern Electronic Chemicals Co., Ltd.
School of Electrical and Information Engineering, Shaanxi University of Science and Technology
State Key Laboratory of Coordination Chemistry, Nanjing National Laboratory of Microstructures, School of Chemistry and Chemical Engineering, Nanjing University
State Key Laboratory of Pollution Control and Resource Reuse, Department of Environmental Engineering, Nanjing University, Nanjing 210093, China