ZHOU Guang-zheng, LAN Tian, LI Ying etc. High Temperature-stable 25 Gbit/s 850 nm Vertical-cavity Surface-emitting Lasers[J]. Chinese Journal of Luminescence, 2019,40(5): 630-634
ZHOU Guang-zheng, LAN Tian, LI Ying etc. High Temperature-stable 25 Gbit/s 850 nm Vertical-cavity Surface-emitting Lasers[J]. Chinese Journal of Luminescence, 2019,40(5): 630-634 DOI: 10.3788/fgxb20194005.0630.
High Temperature-stable 25 Gbit/s 850 nm Vertical-cavity Surface-emitting Lasers
By using the material of AlAs with high thermal conductivity in the n-type distributed Bragg reflector (DBR) and increasing the thickness ratio of the AlAs layer
the thermal conductivity of N-side DBR was greatly increased and the high temperature performance of the device was improved. VCSELs devices were produced
and the results of DC test under different temperature conditions showed that the maximum thermal rollover optical output power was 9 mW at 25℃
and the maximum optical output power of 5 mW was achieved at a thermal rollover current of 11 mA at 85℃
showing high DC performance of high temperature operation. The far field divergence angle was less than 17. Eye diagrams were clear under different temperature conditions varying from 0℃ to 70℃
indicating that the devices met the requirements of high temperature 25 Gbit/s operation.
WESTBERGH P,GUSTAVSSON J S,KGEL B,et al.. Impact of photon lifetime on high-speed VCSEL performance[J]. IEEE J. Sel. Top. Quantum Electron., 2011,17(6):1603-1613.
李惠,贾晓卫,魏泽坤,等. 高速光通讯面发射激光器的热分析及优化[J]. 发光学报, 2017,38(11):1516-1522. LI H,JIA X W,WEI Z K,et al.. Thermal analysis and structure optimization of high-speed optical communication-VCSEL[J]. Chin. J. Lumin., 2017,38(11):1516-1522. (in Chinese)
竹内哲也. 包含多层反射器的光学设备和垂直腔面发射激光器:中国,CN101132118[P]. 2008-02-27. TAKEUCHI T. Optical device including multilayer reflector and vertical cavity surface emitting laser:China,CN101132118[P]. 2008-02-27. (in Chinese)
张永明,钟景昌,赵英杰,等. 850 nm氧化物限制型VCSEL的温度特性[J]. 半导体学报, 2005,26(5):1024-1027. ZHANG Y M,ZHONG J C,ZHAO Y J,et al.. Temperature characteristics of 850 nm oxide confined VCSELs[J]. Chin. J. Semicond., 2005,26(5):1024-1027. (in Chinese)
张星,张奕,张建伟,等. 894 nm高温垂直腔面发射激光器及其芯片级铯原子钟系统的应用[J]. 物理学报, 2016,65(13):134204-1-9. ZHANG X,ZHANG Y,ZHANG J W,et al.. 894 nm high temperature operating vertical-cavity-surface-emitting laser and its application in Cs chip-scale atomic-clock system[J]. Acta Phys. Sinica, 2016,65(13):134204-1-9. (in Chinese)
张建伟,宁永强,张星,等. 增益-腔模失配型高温工作垂直腔面发射半导体激光器[J]. 中国激光, 2013,40(5):0502001-1-8. ZHANG J W,NING Y Q,ZHANG X,et al.. Gain-cavity mode detuning vertical cavity surface emitting laser operating at the high temperature[J]. Chin. J. Lasers, 2013,40(5):0502001-1-8. (in Chinese)
AFROMOWITZ M A. Thermal conductivity of Ga1-xAlxAs alloys[J]. J. Appl. Phys., 1973,44(3):1292-1294.
BLOKHIN S A,BOBROV M A,MALEEV N A,et al.. Anomalous lasing of high-speed 850 nm InGaAlAs oxide-confined vertical-cavity surface-emitting lasers with a large negative gain-to-cavity wavelength detuning[J]. Appl. Phys. Lett., 2014,105(6):061104-1-5.
CHI K L,YEN J L,WUN J M,et al.. Strong wavelength detuning of 850 nm vertical-cavity surface-emitting lasers for high-speed (>40 Gbit/s) and low-energy consumption operation[J]. IEEE J. Sel. Top. Quantum Electron., 2015,21(6):470-479.
LARISCH G,MOSER P,LOTT J A,et al.. Large bandwidth,small current density,and temperature stable 980-nm VCSELs[J]. IEEE J. Quantum Electron., 2017,53(6):2400908-1-8.