MAPbI(3-x)Brx Perovskite Solar Cells Based on Adjustable Band Gap
Device Fabrication and Physics|更新时间:2020-08-12
|
MAPbI(3-x)Brx Perovskite Solar Cells Based on Adjustable Band Gap
Chinese Journal of LuminescenceVol. 40, Issue 4, Pages: 491-496(2019)
作者机构:
延安大学化学与化工学院 陕西省化学反应工程重点实验室,陕西 延安,716000
作者简介:
基金信息:
Support by National Natural Science Foundation of China(21663030,21666039);Science and Technology Coordination Innovation Project of Shaanxi Province(2017TSCL-N-7-3);Key Laboratory of Education Department of Shaanxi Province(15JS120);Doctoral Research Initial Funding from Yan'an University(YDBK2017-14);Natural Science Foundation of Yan'an University(YDQ2018-15)
WEI Qing-bo, GUI A-min, GAO Jing-nan etc. MAPbI<sub>(3-<em>x</em>)</sub>Br<sub><em>x</em></sub> Perovskite Solar Cells Based on Adjustable Band Gap[J]. Chinese Journal of Luminescence, 2019,40(4): 491-496
WEI Qing-bo, GUI A-min, GAO Jing-nan etc. MAPbI<sub>(3-<em>x</em>)</sub>Br<sub><em>x</em></sub> Perovskite Solar Cells Based on Adjustable Band Gap[J]. Chinese Journal of Luminescence, 2019,40(4): 491-496 DOI: 10.3788/fgxb20194004.0491.
MAPbI(3-x)Brx Perovskite Solar Cells Based on Adjustable Band Gap
perovskite solar cell was deposited in one-step solution approach. This study focuses on the influence of MABr on the morphology
optical absorption and photovoltaic performances. The results show that the surface of the deposited CH
3
NH
3
PbI
(3-
x
)
Br
x
became rougher and the grain sizes larger with the MABr concentration increasing. UV-Vis-NIR spectra and photoluminescence peak of CH
3
NH
3
PbI
(3-
x
)
Br
x
film blue shifted with increasing of the MABr concentration. The MAPbI
(3-
x
)
Br
x
solar cells exhibite open circuit voltage of 1.02 V with power conversion efficiency of 12.68%.
关键词
Keywords
references
KOJIMA A,TESHIMA K,SHIRAI Y S,et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009,131(17):6050-6051.
IM J H,LEE C R,LEE J W,et al.. 6.5% efficient perovskite quantum-dot-sensitized solar cell[J]. Nanoscale, 2011, 3(10):4088-4093.
KIM H S,LEE C R,IM J H,et al.. Lead iodide perovskite sensitized all-solid-state submicron thin film mesoscopic solar cell with efficiency exceeding 9%[J]. Sci. Rep., 2012,2:591.
LEE M,TEUSCHER J,MIYASAKA T,et al.. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites[J]. Science, 2012,338(6107):643-647.
BURSCHKA J,PELLET N,MOON S J,et al.. Sequential deposition as a route to high-performance perovskite-sensitized solar cells[J]. Nature, 2013,499:316-319.
STRANKS S D,EPERON G E,GRANCINI G,et al.. Electron-hole diffusion lengths exceeding 1 micrometer in an organometal trihalide perovskite absorber[J]. Science, 2013,342(6156):341-344.
YANG D,YANG R X,ZHANG J,et al.. High efficiency flexible perovskite solar cells using superior low temperature TiO2[J]. Energy Environ. Sci., 2015,8(11):3208-3214.
YANG Z,CAI B,ZHOU B,et al.. An up-scalable approach to CH3NH3PbI3 compact films for high-performance perovskite solar cells[J]. Nano Energy, 2015,15:670-678.
LIU M Z,JOHNSTON M B,SNAITH H J. Efficient planar heterojunction perovskite solar cells by vapour deposition[J]. Nature, 2013,501(7467):395-398.
GONZALEZ-PEDRO V,JUAREZ-PEREZ E J,ARSYAD W S,et al.. General working principles of CH3NH3PbX3 perovskite solar cells[J]. Nano Lett., 2014,14(2):888-893.
LIU D Y,KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat. Photon., 2014,8(2):133-138.
WOJCIECHOWSKI K,SALIBA M,LEIJTENS T,et al.. Sub-150℃ processed meso-superstructured perovskite solar cells with enhanced efficiency[J]. Energy Environ. Sci., 2014,7(3):1142-1147.
ZHOU H P,CHEN Q,LI G,et al.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014,345(6196):542-546.
ZI W,JIN Z,LIU S,et al.. Flexible perovskite solar cells based on green, continuous roll-to-roll printing technology[J]. J. Energy Chem., 2018,27(4):971-989.
LIU Y C,YANG Z,CUI D,et al.. Two-inch-sized perovskite CH3NH3PbX3(X=Cl,Br,I) crystals:growth and characterization[J]. Adv. Mater., 2015,27(25):5176-5183.
WEI Q,YANG Z,YANG D,et al.. The effect of transparent conductive oxide on the performance CH3NH3PbI3 perovskite solar cell without electron/hole selective layers[J]. Sol. Energy, 2016,135:654-661.
GONZALEZ-CARRERO S,GALIAN R E,PREZ-PRIETO J. Maximizing the emissive properties of CH3NH3PbBr3 perovskite nanoparticles[J]. J. Mater. Chem. A, 2015,3(17):9187-9193.
KIM H B,IM I,YOON Y,et al.. Enhancement of photovoltaic properties of CH3NH3PbBr3 heterojunction solar cells by modifying mesoporous TiO2 surfaces with carboxyl groups[J]. J. Mater. Chem. A, 2015,3(17):9264-9270.
KIM Y H,CHO H,HEO J H,et al.. Multicolored organic/inorganic hybrid perovskite light-emitting diodes[J]. Adv. Mater., 2015,27(7):1248-1254.
LEWIS D J,O'BRIEN P. Ambient pressure aerosol-assisted chemical vapour deposition of (CH3NH3)PbBr3,an inorganic-organic perovskite important in photovoltaics[J]. Chem. Commun., 2014,50(48):6319-6321.
RYU S,NOH J H,JEON N J,et al.. Voltage output of efficient perovskite solar cells with high open-circuit voltage and fill factor[J]. Energy Environ. Sci., 2014,7(8):2614-2618.
CHEN Q,ZHOU H P,FANG Y H,et al.. The optoelectronic role of chlorine in CH3NH3PbI3(Cl)-based perovskite solar cells[J]. Nat. Commun., 2015,6:7269.
XIE Y,SHAO F,WANG Y M,et al.. Enhanced performance of perovskite CH3NH3PbI3 solar cell by using CH3NH3I as additive in sequential deposition[J]. ACS Appl. Mater. Interfaces, 2015,7(23):12937-12942.
SHI J J,LUO Y H,WEI H Y,et al.. Modified two-step deposition method for high-efficiency TiO2/CH3NH3PbI3 heterojunction solar cells[J]. ACS Appl. Mater. Interfaces, 2014,6(12):9711-9718.
LIU D Y,YANG J L,KELLY T L. Compact layer free perovskite solar cells with 13.5% efficiency[J]. J. Am. Chem. Soc., 2014,136:17116-17122.
SUN S Y,SALIM T,MATHEWS N,et al.. The origin of high efficiency in low-temperature solution-processable bilayer organometal halide hybrid solar cells[J]. Energy Environ. Sci., 2014,7(1):399-407.
REN X,YANG D,YANG Z,et al.. Solution-processed Nb:SnO2 electron transport layer for efficient planar perovskite solar cells[J]. ACS Appl. Mater. Interfaces, 2017,9(3):2421-2429.
YANG D,YANG R X,WANG K,et al.. High efficiency planar-type perovskite solar cells with negligible hysteresis using EDTA-complexed SnO2[J]. Nat. Commun., 2018,9(1):3239.