Monte-Carlo Ray-tracing Simulations of Perovskite Quantum Dots-based Luminescent Solar Concentrators
Device Fabrication and Physics|更新时间:2020-08-12
|
Monte-Carlo Ray-tracing Simulations of Perovskite Quantum Dots-based Luminescent Solar Concentrators
Chinese Journal of LuminescenceVol. 40, Issue 4, Pages: 484-490(2019)
作者机构:
宁波大学 信息科学与工程学院,浙江 宁波,315211
作者简介:
基金信息:
Supported by National Natural Science Foundation of China(61704094,61474068);Research Foundation of Education Bureau of Zhejiang Province(Y201737316);Sponsored by K. C. Wong Magna Fund in Ningbo University
SHU Jun-peng, WANG Peng-jun, ZHANG Xiao-wei etc. Monte-Carlo Ray-tracing Simulations of Perovskite Quantum Dots-based Luminescent Solar Concentrators[J]. Chinese Journal of Luminescence, 2019,40(4): 484-490
SHU Jun-peng, WANG Peng-jun, ZHANG Xiao-wei etc. Monte-Carlo Ray-tracing Simulations of Perovskite Quantum Dots-based Luminescent Solar Concentrators[J]. Chinese Journal of Luminescence, 2019,40(4): 484-490 DOI: 10.3788/fgxb20194004.0484.
Monte-Carlo Ray-tracing Simulations of Perovskite Quantum Dots-based Luminescent Solar Concentrators
complex device structure and high manufacturing cost severely hinder the development of the conventional solar concentrators. As a type of novel solar concentrators
luminescent solar concentrator shows numerous potentials to significantly reduce the cost of solar cells and attracts much attentions. Here
the all-inorganic perovskite CsPbBr
3
quantum dots are synthesized
via
a hot-injection approach and then the CsPbBr
3
-based luminescent solar concentrators are designed and fabricated. According to TEM characterization and spectroscopic measurements
the CsPbBr
3
quantum dots exhibit the typical cubic structure
the quantum yield of up to 76.8%
and the PL emission at 512 nm with the FWHM of 22 nm. Further
the optimal quantum dots doping concentration and the average optical collecting efficiency are confirmed by the calculation based on Monte Carlo intelligent optimization algorithm. The optimal average collecting efficiency is 5.4% when CsPbBr
3
quantum dots doping concentration is fixed at 2.110
-5
mol/L. We anticipate this numerical simulation process based on Monte Carlo intelligent optimization algorithm will shed light on the future research for determining the characteristic parameter of luminescent solar concentrators.
关键词
Keywords
references
GREEN M A,HISHIKAWA Y,DUNLOP E D,et al.. Solar cell efficiency tables (version 52)[J]. Prog. Photovoltaics, 2018,26(7):427-436.
余林蔚,于忠卫,钱晟一,等. 高效径向结纳米线薄膜太阳能电池研究进展[J].南京大学学报(自然科学),2014,50(3):302-308. YU L W,YU Z W,QIAN C Y,et al.. Recent progresses in developing high performance radial junction thin film solar cells[J]. J. Nanjing Univ. (Nat. Sci.), 2014,50(3):302-308. (in Chinese)
KABIR E,KUMAR P,KUMAR S,et al.. Solar energy:potential and future prospects[J]. Renew. Sustain. Energy Rev., 2018,82:894-900.
吕昕. 美国光伏市场调研及前景研究[J].发光学报,2018,39(4):595-599. LYU X. Research on American solar PV market and forecast[J]. Chin. J. Lumin., 2018,39(4):595-599. (in Chinese)
WEBER W H,LAMBE J. Luminescent greenhouse collector for solar radiation[J]. Appl. Opt., 1976,15(10):2299-2300.
BRADSHAW L R,KNOWLES K E,MCDOWALL S,et al.. Nanocrystals for luminescent solar concentrators[J]. Nano Lett., 2015,15(2):1315-1323.
MEINARDI F,COLOMBO A,VELIZHANIN K A,et al.. Large-area luminescent solar concentrators based on Stokes-shift-engineered nanocrystals in a mass-polymerized PMMA matrix[J]. Nat. Photon., 2014,8(5):392-399.
MEINARDI F,MCDANIEL H,CARULLI F,et al.. Highly efficient large-area colourless luminescent solar concentrators using heavy-metal-free colloidal quantum dots[J]. Nat. Nanotechnol., 2015,10(10):878-885.
ZHOU Y F,BENETTI D,FAN Z Y,et al.. Near infrared,highly efficient luminescent solar concentrators[J]. Adv. Energy Mater., 2016,6(11):1501913-1-8.
MEINARDI F,EHRENBERG S,DHAMO L,et al.. Highly efficient luminescent solar concentrators based on earth-abundant indirect-bandgap silicon quantum dots[J]. Nat. Photon., 2017,11(3):177-185.
ZHOU Y F,BENETTI D,TONG X,et al.. Colloidal carbon dots based highly stable luminescent solar concentrators[J]. Nano Energy, 2018,44:378-387.
ZHAO H,ZHOU Y F,BENETTI D,et al.. Perovskite quantum dots integrated in large-area luminescent solar concentrators[J]. Nano Energy, 2017,37:214-223.
?AHIN D,ILAN B,KELLEY D F. Monte-Carlo simulations of light propagation in luminescent solar concentrators based on semiconductor nanoparticles[J]. J. Appl. Phys., 2011,110(3):033108-1-8.
KUMAR A,SAYYED M I,DONG M G,et al.. Effect of PbO on the shielding behavior of ZnO-P2O5 glass system using Monte Carlo simulation[J]. J. Non-Cryst. Solids, 2018,481:604-607.
ZHANG F,ZHANG N N,ZHANG Y,et al.. Theoretical simulation and analysis of large size BMP-LSC by 3D Monte Carlo ray tracing model[J]. Chin. Phys. B, 2017,26(5):054201-1-7.
CHENG Z D,ZHAO X R,HE Y L. Novel optical efficiency formulas for parabolic trough solar collectors:computing method and applications[J]. Appl. Energy, 2018,224:682-697.
MAHAN J R,VINH N Q,HO V X,et al.. Monte Carlo ray-trace diffraction based on the Huygens-Fresnel principle[J]. Appl. Opt., 2018,57(18):D56-D62.
FAN M,YOU S J,XIA J B,et al.. An optimized Monte Carlo ray tracing optical simulation model and its applications to line-focus concentrating solar collectors[J]. Appl. Energy, 2018,255:769-781.
SHU J P,ZHANG X W,WANG P J,et al.. Monte-Carlo simulations of optical efficiency in luminescent solar concentrators based on all-inorganic perovskite quantum dots[J]. Phys. B Condens. Matter, 2018,548:53-57.
林涛,万能,韩敏,等. SnO2纳米晶体的制备、结构与发光性质[J].物理学报,2009,58(8):5821-5825. LIN T,WAN N,HAN M,et al.. Synthesis,structures and luminescence properties of SnO2 nanoparticles[J]. Acta Phys. Sinica, 2009,58(8):5821-5825. (in Chinese)
ZHOU L,TAN Y L,WANG J Y,et al.. 3D self-assembly of aluminium nanoparticles for plasmon-enhanced solar desalination[J]. Nat. Photon., 2016,10(6):393-398.