Growth Mechanism of TiO2 Nanotube Arrays by Etching Treatment and Their Photoelectric Property
Synthesis and Properties of Materials|更新时间:2020-08-12
|
Growth Mechanism of TiO2 Nanotube Arrays by Etching Treatment and Their Photoelectric Property
Chinese Journal of LuminescenceVol. 40, Issue 4, Pages: 459-467(2019)
作者机构:
1. 青岛科技大学 材料科学与工程学院,山东 青岛,266042
2. 福州大学 能源与环境光催化国家重点实验室,福建 福州,350116
作者简介:
基金信息:
Supported by National Natural Science Foundation of China(51402161);Open Project Program of State Key Laboratory of Photocatalysis on Energy and Environment, Fuzhou University(SKLPEE-KF201707)
SUN Qiong, YOU Di, ZANG Tao etc. Growth Mechanism of TiO<sub>2</sub> Nanotube Arrays by Etching Treatment and Their Photoelectric Property[J]. Chinese Journal of Luminescence, 2019,40(4): 459-467
SUN Qiong, YOU Di, ZANG Tao etc. Growth Mechanism of TiO<sub>2</sub> Nanotube Arrays by Etching Treatment and Their Photoelectric Property[J]. Chinese Journal of Luminescence, 2019,40(4): 459-467 DOI: 10.3788/fgxb20194004.0459.
Growth Mechanism of TiO2 Nanotube Arrays by Etching Treatment and Their Photoelectric Property
nanorods are etched into nanotubes by hydrochloric acid
and the growth mechanism is also supposed. During the etching process
the dents appear from the top down and inside out along the growth direction of the nanorod
and finally form the tube structure. Actually
the nanotube with square hollow cross section consists of a mass of surrounded fine nanowires
which will be teared into independent ones at high temperature. When assembled into dye sensitized solar cells(DSSCs)
the photoelectrical conversion efficiency of TiO
2
nanotubes is much higher than that of nanorods
and the highest value(3.26%) is located at the etching temperature of 140℃. It could be deduced that the increased specific surface area and length shortening of the nanotube play the positive and negative effect on the photoelectrical property
respectively. Furthermore
the calcination effect on the structure and photovoltaic property of TiO
2
nanotubes is also carried out. However
the fracture and aggregation of nanotubes could be observed after heating treatment
which therefore increase the difficulty of photo-induced carriers in directional transfer and also reduce the photoelectrical activity.
关键词
Keywords
references
O'REGAN B,GRTZEL M. A low-cost,high-efficiency solar cell based on dye-sensitized colloidal TiO2 films[J]. Nature, 1991,353(6346):737-740.
YELLA A,LEE H W,TSAO H N,et al.. Porphyrin-sensitized solar cells with cobalt (Ⅱ/Ⅲ)-based redox electrolyte exceed 12 percent efficiency[J]. Science, 2011,334(6056):629-634.
XIN X K,HE M,HAN W,et al.. Low-cost copper zinc tin sulfide counter electrodes for high-efficiency dye-sensitized solar cells[J]. Angew. Chem. Int. Ed. Engl., 2011,50(49):11739-11742.
赵宇涵,李雪,关海艳,等. 快速热退火处理ZnO电子传输层对聚合物太阳能电池性能的改善[J].发光学报,2017,38(8):1063-1068. ZHAO Y H,LI X,GUAN H Y,et al.. Enhanced performance of polymer solar cells using rapid thermal annealing treated ZnO electron transporting layer[J]. Chin. J. Lumin., 2017,38(8):1063-1068. (in Chinese)
KIM J H,KIM K P,KIM D H,et al.. Electrospun ZnO nanofibers as a photoelectrode in dye-sensitized solar cells[J]. J. Nanosci. Nanotechnol., 2015,15(3):2346-2350.
CHEN L Y,YIN Y T. Hierarchically assembled ZnO nanoparticles on high diffusion coefficient ZnO nanowire arrays for high efficiency dye-sensitized solar cells[J]. Nanoscale, 2013,5(5):1777-1780.
MANIKANDAN A,SARAVANAN A,ANTONY S A,et al.. One-pot low temperature synthesis and characterization studies of nanocrystalline -Fe2O3 based dye sensitized solar cells[J]. J. Nanosci. Nanotechnol., 2015,15(6):4358-4366.
ZHENG H D,TACHIBANA Y,KALANTAR-ZADEH K. Dye-sensitized solar cells based on WO3[J]. Langmuir, 2010,26(24):19148-19152.
靳闪闪,禹益善,郝洪顺,等.SrSnO3:Sm3+/TiO2复合光阳极的制备及其光电性能[J].发光学报,2016,37(7):786-792. JIN S S,YU Y S,HAO H S,et al.. Preparation and photoelectric performance of SrSnO3:Sm3+/TiO2 composite photoanode[J]. Chin. J. Lumin., 2016,37(7):786-792. (in Chinese)
YANG H G,ZENG H C. Preparation of hollow anatase TiO2 nanospheres via Ostwald ripening[J]. J. Phys. Chem. B, 2004,108(11):3492-3495.
孙琼,孙先淼,李阳,等. 具有阵列-簇双层结构的TiO2纳米棒的光电性能[J].发光学报,2013,34(1):61-65. SUN Q,SUN X M,LI Y,et al.. Photoelectrical properties of TiO2 nanorods with an array-cluster double-layered structure[J]. Chin. J. Lumin., 2013,34(1):61-65. (in Chinese)
SHANKAR K,MOR G K,PRAKASAM H E,et al.. Highly-ordered TiO2 nanotube arrays up to 220m in length:use in water photoelectrolysis and dye-sensitized solar cells[J]. Nanotechnology, 2007,18(6):065707-1-11.
WANG G M,WANG H Y,LING Y C,et al.. Hydrogen-treated TiO2 nanowire arrays for photoelectrochemical water splitting[J]. Nano Lett., 2011,11(7):3026-3033.
CHEN J S,TAN Y L,LI C M,et al.. Constructing hierarchical spheres from large ultrathin anatase TiO2 nanosheets with nearly 100% exposed (001) facets for fast reversible lithium storage[J]. J. Am. Chem. Soc., 2010,132(17):6124-6130.
WU Z B,DONG F,ZHAO W R,et al.. The fabrication and characterization of novel carbon doped TiO2 nanotubes,nanowires and nanorods with high visible light photocatalytic activity[J]. Nanotechnology, 2009,20(23):235701-1-9.
CAO C L,HU C G,WANG X,et al.. UV sensor based on TiO2 nanorod arrays on FTO thin film[J]. Sens. Actuators B Chem., 2011,156(1):114-119.
DIEBOLD U. The surface science of titanium dioxide[J]. Surf. Sci. Rep., 2003,48(5-8):53-229.
BAREA E,XU X Q,GONZLEZ-PEDRO V,et al.. Origin of efficiency enhancement in Nb2O5 coated titanium dioxide nanorod based dye sensitized solar cells[J]. Energy Environ. Sci., 2011,4(9):3414-3419.
MU Q H,LI Y G,ZHANG Q H,et al.. Template-free formation of vertically oriented TiO2 nanorods with uniform distribution for organics-sensing application[J]. J. Hazard. Mater., 2011,188(1-3):363-368.
LIU H,ZHANG Y,LI R Y,et al.. A facile route to synthesize titanium oxide nanowires via water-assisted chemical vapor deposition[J]. J. Nanopart. Res., 2011,13(1):385-391.
PENG X S,CHEN A C. Aligned TiO2 nanorod arrays synthesized by oxidizing titanium with acetone[J]. J. Mater. Chem., 2004,14(16):2542-2548.
WU J J,YU C C. Aligned TiO2 nanorods and nanowalls[J]. J. Phys. Chem. B, 2004,108(11):3377-3379.
ZHOU Q,YANG X F,ZHANG S Q,et al.. Rutile nanowire arrays:tunable surface densities,wettability and photochemistry[J]. J. Mater. Chem., 2011,21(39):15806-15812.
WANG H,BAI Y S,WU Q,et al.. Rutile TiO2 nano-branched arrays on FTO for dye-sensitized solar cells[J]. Phys. Chem. Chem. Phys., 2011,13(15):7008-7013.
BERGER T,LANA-VILLARREAL T,MONLLOR-SATOCA D,et al.. The electrochemistry of transparent quantum size rutile nanowire thin films prepared by one-step low temperature chemical bath deposition[J]. Chem. Phys. Lett., 2007,447(1-3):91-95.
LIU B,AYDIL E S. Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells[J]. J. Am. Chem. Soc., 2009,131(11):3985-3990.
LIAO W P,HSU S C,LIN W H,et al.. Hierarchical TiO2 nanostructured array/P3HT hybrid solar cells with interfacial modification[J]. J. Phys. Chem. C, 2012,116(30):15938-15945.
LIU L,QIAN J S,LI B,et al.. Fabrication of rutile TiO2 tapered nanotubes with rectangular cross-sections via anisotropic corrosion route[J]. Chem. Commun., 2010,46(14):2402-2404.
LV M Q,ZHENG D J,YE M D,et al.. Densely aligned rutile TiO2 nanorod arrays with high surface area for efficient dye-sensitized solar cells[J]. Nanoscale, 2012,4(19):5872-5879.
SUN X M,SUN Q,LI Y,et al.. Effects of calcination treatment on the morphology,crystallinity,and photoelectric properties of all-solid-state dye-sensitized solar cells assembled by TiO2 nanorod arrays[J]. Phys. Chem. Chem. Phys., 2013,15(42):18716-18720.
KUMAR A,MADARIA A R,ZHOU C W. Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrates and their application in dye-sensitized solar cells[J]. J. Phys. Chem. C, 2010,114(17):7787-7792.
PAN H,QIAN J S,YU A,et al.. TiO2 wedgy nanotubes array flims for photovoltaic enhancement[J]. Appl. Surf. Sci., 2011,257(11):5059-5063.
LI Y,SUN Q,MA S,et al.. Synthesis of TiO2-SrTiO3 hetero-structured nanorod arrays and their photoelectrical performance in all-solid-state dye-sensitized solar cells[J]. ECS J. Solid State Sci., 2015,4(3):Q17-Q20.
SUN Q,SUN X M,LI Y,et al.. Correlations between morphology and photoelectrical properties of single-crystal rutile TiO2 nanorods[J]. Sci. Adv. Mater., 2013,5(9):1221-1230.