LI Zhi-lai, LIU Zhong-xin, FENG Ting etc. Structure Change of GdF<sub>3</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup> and Influence on Properties of Upconversion Luminescence by High Temperature Annealing[J]. Chinese Journal of Luminescence, 2019,40(4): 447-452
LI Zhi-lai, LIU Zhong-xin, FENG Ting etc. Structure Change of GdF<sub>3</sub>:Yb<sup>3+</sup>,Er<sup>3+</sup> and Influence on Properties of Upconversion Luminescence by High Temperature Annealing[J]. Chinese Journal of Luminescence, 2019,40(4): 447-452 DOI: 10.3788/fgxb20194004.0447.
Structure Change of GdF3:Yb3+,Er3+ and Influence on Properties of Upconversion Luminescence by High Temperature Annealing
was synthesized by co-precipitation method and annealed at different temperatures. SEM
XRD
thermogravimetric analysis and photoluminescence (PL) were introduced to investigate the effect of the morphology
crystal structure and upconversion (UC) luminescence properties after being annealed. The results suggest that the translation temperature of NaGdF
4
:Yb
3+
Er
3+
crystals from GdF
3
:Yb
3+
Er
3+
crystals was 740.15℃. The properties of UC luminescence are stronger comparing with the unsintered samples. Under 980 nm excitation
the UC luminescence intensity firstly increases and then decreases as the rise of temperature
it reaches the maximum value at 800℃ and the intensity ratio of red/green(R/G) rises from 0.09 to 4.55. With the discussion of UC luminescence transition mechanisms
the properties of UC luminescence could be enhanced due to following factors:with the rise of temperature
the particle size increased from 100-300 nm to 5-8 m because of the particle agglomeration
the improvement of crystallization and a structure change of cubic GdF
3
:Yb
3+
Er
3+
to NaGdF
4
:Yb
3+
Er
3+
particles.
关键词
Keywords
references
WANG W,HUANG W,NI Y,et al.. Graphene supported NaYF4:Yb3+,Tm3+ and N doped P25 nanocomposite as an advanced NIR and sunlight driven upconversion photocatalyst[J]. Appl. Surf. Sci., 2013,282:832-837.
刘艳花,拜文霞,耿中荣,等. Sr3Al2O6:Tb3+,Yb3+荧光粉的近红外量子剪裁效应[J]. 发光学报, 2017,38(4):423-429. LIU Y H,BAI W X,GENG Z R,et al.. Near-infrared quantum cutting of Sr3Al2O6:Tb3+,Yb3+ phosphors[J]. Chin. J. Lumin., 2017,38(4):423-429. (in Chinese)
YU Y G,CHEN G,ZHOU Y S,et al.. Recent advances in rare-earth elements modification of inorganic semiconductor-based photocatalysts for efficient solar energy conversion:a review[J]. J. Rare Earths, 2015,33(5):453-462.
LV R C,GAI S L,DAI Y L,et al.. Highly uniform hollow GdF3 spheres:controllable synthesis,tuned luminescence,and drug-release properties[J]. ACS Appl. Mater. Interfaces, 2013,5(21):10806-10818.
LIU J,LIU Y Z,LI C L,et al.. Green upconversion emissions in Er3+/Yb3+ co-doped CaMoO4 prepared by microwave-assisted metathetic method[J]. J. Nanosci. Nanotechol., 2016,16(1):802-806.
付姚,史月,王朝阳,等. YVO4:Yb3+,Er3+纳米粒子颜色可控的高色纯度上转换发光[J]. 发光学报, 2017,38(1):7-12. FU Y,SHI Y,WANG Z Y,et al.. High-purity and color-tunable up-conversion luminescence of YVO4:Yb3+,Er3+ nanoparticles[J]. Chin. J. Lumin., 2017,38(1):7-12. (in Chinese)
QIN W P,LIU Z Y,SIN C N,et al.. Multi-ion cooperative processes in Yb3+ clusters[J]. Light Sci. Appl., 2014,3:e193-1-6.
GUO L N,WANG Y H,ZENG W,et al.. Band structure and near infrared quantum cutting investigation of GdF3:Yb3+,Ln3+ (Ln=Ho,Tm,Er,Pr,Tb) nanoparticles[J]. Phys. Chem. Chem. Phys., 2013,15(34):14295-14302.
YANG C Q,ZHAO W,YU X X,et al.. Facile synthesis and luminescence property of core-shell structured NaYF4:Yb,Er/g-C3N4 nanocomposites[J]. Mater. Res. Bull., 2017,94:415-422.
YIN W Y,ZHAO L N,ZHOU L J,et al.. Enhanced red emission from GdF3:Yb3+,Er3+ upconversion nanocrystals by Li+ doping and their application for bioimaging[J]. Chemistry, 2012,18(30):9239-9245.
YANG C Q,LIU J,MA L,et al.. Synthesis and structure change of graphene oxide/GdF3:Yb,Er nanocomposites with improved upconversion luminescence[J]. Mater. Res. Bull., 2016,84:283-287.
AUZEL F. Upconversion and anti-Stokes processes with f and d ions in solids[J]. Chem. Rev., 2004,104(1):139-174.
HUANG X Y,HAN S Y,HUANG W,et al.. Enhancing solar cell efficiency:the search for luminescent materials as spectral converters[J]. Chem. Soc. Rev., 2013,42(1):173-201.
LI D D,SHAO Q Y,DONG Y,et al.. Phase-,shape-and size-controlled synthesis of NaYF4:Yb3+,Er3+ nanoparticles using rare-earth acetate precursors[J]. J. Rare Earths, 2014,32(11):1032-1036.
CHEN X,PENG D F,WANG F. Tuning NaYF4 nanoparticles through alkaline earth doping[J]. Nanomaterials, 2013,3(4):583-591.
YANG C Q,MA L,WU S N,et al.. Microwave heating synthesis and visible upconversion luminescence of NaGdF4:Yb,Er/reduced graphene oxide nanocomposites[J]. J. Mater. Sci. Mater. Electron., 2016,27(11):11720-11725.
LI J F,JIA Y L,XU Y J,et al.. In situ epitaxial growth of GdF3 on NaGdF4:Yb,Er nanoparticles[J]. Inorg. Chem. Front., 2017,4(12):2119-2125.
张喜田,王玉玺. 退火温度对InP晶体中Er3+离子的发光特性影响的研究[J]. 人工晶体学报, 1998,27(2):152-155. ZHANG X T,WANG Y X. Study of the influence of annealing temperature on luminescence characteristics of the Er3+ ions in InP crystal[J]. J. Synth. Cryst., 1998,27(2):152-155. (in Chinese)
常建军,黄世华,彭洪尚,等. 稀土纳米发光材料的燃烧法制备及光谱性质[J]. 光谱学与光谱分析, 2006,26(2):231-234. CHANG J J,HUANG S H,PENG H S,et al.. Spectrum and synthesis of rare earth activated nanoparticle[J]. Spectrosc. Spect. Anal., 2006,26(2):231-234. (in Chinese)
赵军伟,单含,贾铁昆,等. 氮气氛围中高温退火对NaYF4:Yb3+,Er3+纳米粒子上转换发光影响[J]. 发光学报, 2011,32(12):1227-1232. ZHAO J W,SHAN H,JIA T K,et al.. Effect of high temperature annealing in nitrogen on upconversion luminescence of NaYF4:Yb3+,Er3+ Nanoparticles[J]. Chin. J. Lumin., 2011,32(12):1227-1232. (in Chinese)
Dual-mode Optical Thermometry with High Sensitivity Achieved in Na3Y(VO4)2∶Yb3+/Er3+
Enhancement of NaErF4 Nanostructure Upconversion Luminescence with K+ Doping
Synthesis and Temperature Sensing of CaF2: Er3+,Yb3+ Nanoparticles with Upconversion Fluorescence
Upconversion Optical Temperature Sensing of YbNbO4∶Ho3+ with Host Sensitization
Related Author
XIANG Guotao
YI Yuanyuan
ZHANG Yu
XIONG Ming
XU Qinyu
CHEN Hongdou
CHANG Ying
YAO Lu
Related Institution
Department of Mathematics and Physics, Chongqing University of Posts and Telecommunications
State Key Laboratory of Luminescence and Applications, Changchun Institute of Optics, Fine Mechanics and Physics, Chinese Academy of Sciences, Changchun 130033, China
University of Chinese Academy of Sciences, Beijing 100049, China
Jilin Unieversity
Institute of Chemistry, Chinese Academy of Sciences