ZHU Yan-xu, LI Lai-long, BAI Xin-he etc. Preparation and Grid Optimization of Photosensitive Gate GaN Based HEMT Devices[J]. Chinese Journal of Luminescence, 2019,40(3): 311-316
ZHU Yan-xu, LI Lai-long, BAI Xin-he etc. Preparation and Grid Optimization of Photosensitive Gate GaN Based HEMT Devices[J]. Chinese Journal of Luminescence, 2019,40(3): 311-316 DOI: 10.3788/fgxb20194003.0311.
Preparation and Grid Optimization of Photosensitive Gate GaN Based HEMT Devices
Ferroelectric materials have been very active in recent years as the infrared devices of photosensitive films. Their good piezoelectricity
ferroelectric
pyroelectric
photoelectric and nonlinear optical properties
and the integration of semiconductor technology
have a broad application prospect in the field of microelectronics and optoelectronic technology. The experiment combined the ferroelectric material lead zirconate titanate as the photosensitive layer and the GaN base high electron mobility transistor (HEMT). The photosensitive gate GaN based HEMT device was successfully prepared and detected under the light wavelength of 365 nm. After a large number of experimental tests
the light illumination of the device was found in this band. The saturation current reaches 28 mA
and the saturation current is increased by 12 mA compared with that without illumination. In addition
by reasonably changing the size of the device structure
including the gate length and the gate leakage distance
it is found that the saturation output current decreases in turn with the increase of the gate length
while the effect of the gap between the gate leakage distance on the threshold voltage and the saturation current is not significant. It can be seen that changing the device structure parameters can improve the performance of the device and the detection efficiency.
关键词
Keywords
references
POLLA D L,YE C P,TAMAGAWA T. Surface-micromachined PbTiO3 pyroelectric detectors[J]. Appl. Phys. Lett., 1991,59(27):3539-3541.
ROBIN T,MESARWI A,WU N J,et al.. Y1Ba2Cu3O6+ growth on thin Y-enhanced SiO2 buffer layers onsilicon[J]. Appl. Phys. Lett., 1991,59(18):2323-2325.
LIN H,WU N J,GEIGER F,et al.. Photoresponse and fast optical readout for a PbZrxTi1-xO3/YBa2Cu3O7-x thin-film heterostructure capacitor[J]. Appl. Phys. Lett., 1995,66(10):1172-1174.
ZOMORRODIAN A R,LIN H,WU N J,et al.. High temperature polarization retention of a Pb(Zr0.52Ti0.48)O3/YBa2Cu3O7-x memory cell[J]. Appl. Phys. Lett., 1996,69(12):1789-1791.
MYERS S B,BANDYOPADHYAY A,FRASER J D. Micromachining of PZT MEMS[J]. Am. Ceram. Soc., 2003,82:30-35.
WHATMORER W. Pyroelectric devices and materials[J]. Rep. Prog. Phys., 1986,49(12):1335-1386.
杨彪,刘向鑫,李辉. 铁电半导体耦合光伏器件的历史与最新进展[J]. 物理学报, 2015,64(3):038807-1-11. YANG B,LIU X X,LI H. History and latest development of ferro electric-semiconductor coupled photovoltaic devices[J].Acta Phys. Sinica, 2015,64(3):038807-1-11. (in Chinese)
FRUNZA R,RICINSCHI D,GHEORGHIU F,et al.. Preparation and characterisation of PZT films by RF-magnetron sputtering[J]. J. Alloys Compd., 2011,509(21):6242-6246.
李飞. Fe-Al合金中调幅分解与有序化共存相变行为的研究[D]. 哈尔滨:哈尔滨工业大学, 2015. LI F. The Research on The Phase Transformation of Sponodal Decompoition and Ordering Coexistence in The Fe-Al Alloy[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
MATSUNAGA T,HOSOKAWA T,UMETANI Y,et al.. Structural investigation of Pby(Zr0.57Ti0.43)2-yO3 films deposited on Pt(001)/MgO(001) substrates by rf sputtering[J]. Phys. Rev. B, 2002,66(6):064102-1-8.
RUDEN P P,ALBRECHT J D,SUTANDI A,et al.. Extrinsic performance limitations of AlGaN/GaN heterostructure field effect transistors[J]. MRS Internet J. Nitride Semicond. Res., 1999,4(S1):6-35.
WU Y F,KAPOLENK D,IBBETSON J P,et al.. Very-high power density AlGaN/GaN HEMTs[J]. IEEE Trans. Electron. Dev., 2001,48(3):586-590.
JIANG Y N,CHEN Q S,PRASAD V. Numerical simulation of ammonothermal growth processes of GaN crystals[J]. J. Cryst. Growth, 2011,318(1):411-414.
NEAMEN D A.半导体物理与器件[M]. 赵毅强,姚素英,解晓东,译. 北京:电子工业出版社, 2010:211-212. NEAMEN D A. Semiconductor Physics and Devices:Basic Principles[M]. ZHAO Y Q,YAO S Y,XIE X D,trans. Beijing:Electronics Industry Press, 2010:211-212. (in Chinese)
王冲,张金风,杨燕,等. 变温C-V和传输线模型测量研究AlGaN/GaN HEMT温度特性[J]. 半导体学报, 2006,27(5):864-868. WANG C,ZHANG J C,YANG Y,et al.. Temperature characteristics of AlGaN/GaN HEMTs using C-V and TLM for evaluating temperatures[J]. Chin. J. Semicond., 2006,27(5):864-868. (in Chinese)
于宁,王红航,刘飞飞,等. GaN HEMT器件结构的研究进展[J]. 发光学报, 2015,36(10):1178-1187. YU N,WANG H H,LIU F F,et al.. Research progress of GaN HEMT device structure[J]. Chin. J. Lumin., 2015,36(10):1178-1187. (in Chinese)
PARK P S,RAJAN S. Simulation of short-channel effects in N-and Ga-polar AlGaN/GaN HEMTs[J]. IEEE Trans. Electron. Dev., 2011,58(3):704-708.
QIAO H,YUAN J,XU Z Q,et al.. Broadband photodetectors based on graphene-Bi2Te3 heterostructure[J]. ACS Nano,2015,9(2):1886-1894.
HU W D,CHEN X S,YIN F,et al.. Two-dimensional transient simulations of drain lag and current collapse in GaN-based high-electron-mobility transistors[J]. J. Appl. Phys., 2009,105(8):084502-1-7.
VETURY R,ZHANG N Q,KELLER S,et al.. The impact of surface states on the DC and RF characteristics of AlGaN/GaN HFETs[J]. IEEE Trans. Electron Dev., 2001,48(3):560-566.
冯嘉鹏,赵红东,孙渤,等. GaN基HEMT器件的优化设计[J]. 半导体技术, 2014,39(11):817-821. FENG J P,ZHAO H D,SUN B,et al.. Optimal design of GaN-based HEMT devices[J]. Semicond. Technol., 2014,39(11):817-821. (in Chinese)