Optimum Design of Narrowband Organic Photodetectors
Device Fabrication and Physics|更新时间:2020-08-12
|
Optimum Design of Narrowband Organic Photodetectors
Chinese Journal of LuminescenceVol. 40, Issue 2, Pages: 224-230(2019)
作者机构:
广东石油化工学院 理学院, 广东 茂名 525000
作者简介:
基金信息:
Supported by Science and Technology Planning Project of Maoming(mm2017000007,2017309);Natural Science Foundation of Guangdong University of Petrochemical Technology(2017rc20)
LUO Guo-ping,. Optimum Design of Narrowband Organic Photodetectors[J]. Chinese Journal of Luminescence, 2019,40(2): 224-230 DOI: 10.3788/fgxb20194002.0224.
Optimum Design of Narrowband Organic Photodetectors
Unlike conventional inorganic photodetectors in conjunction with optical filters or prisms to obtain wavelength selective response
photodetectors rely on organic semiconductors enable to facilitate wavelength selective absorption. In this article
a novel method and relative architecture are proposed to effectively enhance the peak absorption and decrease the full width at half maximum (FWHM) of the narrowband organic photodetectors. The architecture is combined with distributed Bragg reflector (DBR) and organic photodiode (OPD). An optical resonant is formed between the top contact and bottom contact of the OPD. The effects of the center wavelength of the DBR
the thickness of transparent top contact and the thickness of photoactive layer on the absorption performance of the organic photodetector were analyzed in detail by using the transfer matrix method. The simulation results indicate that FWHM less than 20 nm and absorption peak above 70% can be obtained with the Tamm plasmon polaritons resonant wavelength arisen nearby the optical bandgap of the photoactive layer. Red and NIR organic photodetectors can be obtained with photoactive layers of PTB7:PC
71
BM and PTB7-Th:IEICO-4F
respectively. The design concept combining materials and device structure allows for tuning response region from visible to NIR.
关键词
Keywords
references
HEEGER A J. 25th Anniversary article:bulk heterojunction solar cells:understanding the mechanism of operation[J]. Adv. Mater., 2014,26(1):10-28.
THEJOKALYANI N,DHOBLE S J. Organic light emitting diodes:energy saving lighting technology-a review[J]. Renew. Sustain. Energy Rev., 2012,16(5):2696-2723.
SIRRINGHAUS H. Materials and applications for solution-processed organic field-effect transistors[J]. Proc. IEEE, 2009,97(9):1570-1579.
LI G,ZHU R,YANG Y. Polymer solar cells[J]. Nat. Photon., 2012,6(3):153-161.
BRIAND D,OPREA A,COURBAT J,et al.. Making environmental sensors on plastic foil[J]. Mater. Today, 2011,14(9):416-423.
BAEG K J,BINDA M,NATALI D,et al.. Organic light detectors:photodiodes and phototransistors[J]. Adv. Mater., 2013,25(31):4267-4295.
MORIMUNE T,KAJⅡ H,OHMORI Y. Photoresponse properties of a high-speed organic photodetector based on copper-phthalocyanine under red light illumination[J]. IEEE Photonics Technol. Lett., 2006,18(24):2662-2664.
WIENK M M,STRUIJK M P,JANSSEN R A J. Low band gap polymer bulk heterojunction solar cells[J]. Chem. Phys. Lett., 2006,422(4-6):488-491.
SARGENT E H. Solar cells,photodetectors,and optical sources from infrared colloidal quantum dots[J]. Adv. Mater., 2008,20(20):3958-3964.
GONG X,TONG M H,XIA Y J,et al.. High-detectivity polymer photodetectors with spectral response from 300 nm to 1450 nm[J]. Science, 2009,325(5948):1665-1667.
ZHOU X K,YANG D Z,MA D G. Extremely low dark current,high responsivity,all-polymer photodetectors with spectral response from 300 nm to 1000 nm[J]. Adv. Opt. Mater., 2015,3(11):1570-1576.
GHEZZI D,ANTOGNAZZA M R,DAL MASCHIO M,et al.. A hybrid bioorganic interface for neuronal photoactivation[J]. Nat. Commun., 2011,2:166.
NALWA K S,CAI Y K,THOEMING A L,et al.. Polythiophene-fullerene based photodetectors:tuning of spectral response and application in photoluminescence based (bio)chemical sensors[J]. Adv. Mater., 2010,22(37):4157-4161.
安涛,涂传宝,杨圣,等. 基于PBDT-TT-F:PCBM体异质结红光探测器的光电特性[J]. 发光学报, 2017,38(12):1643-1649. AN T,TU C B,YANG S,et al.. Photovoltaic characteristics of PBDT-TT-F:PCBM based bulk heterojunction red detector[J]. Chin. J. Lumin., 2017,38(12):1643-1649. (in Chinese)
GUO F W,YANG B,YUAN Y B,et al.. A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection[J]. Nat. Nanotechnol., 2012,7(12):798-802.
SUNG M J,KIM K,KWON S K,et al.. Phenanthro\[110,9,8-cdefg] carbazole-thiophene,donor-donor copolymer for narrow band green-selective organic photodiode[J]. J. Phys. Chem. C, 2017,121(29):15931-15936.
ARMIN A,JANSEN-VAN VUUREN R D,KOPIDAKIS N,et al.. Narrowband light detection via internal quantum efficiency manipulation of organic photodiodes[J]. Nat. Commun., 2015,6:6343.
PEUMANS P,YAKIMOV A,FORREST S R,et al.. Small molecular weight organic thin-film photodetectors and solar cells[J]. J. Appl. Phys., 2003,93(7):3693-3723.
KAVOKIN A V,SHELYKH I A,MALPUECH G. Lossless interface modes at the boundary between two periodic dielectric structures[J]. Phys. Rev. B, 2005,72(23):233102.
KALITEEVSKI M,IORSH I,BRAND S,et al.. Tamm plasmon-polaritons:possible electromagnetic states at the interface of a metal and a dielectric Bragg mirror[J]. Phys. Rev. B, 2007,76(16):165415.
BRVCKNER R,SUDZIUS M,HINTSCHICH S I,et al.. Parabolic polarization splitting of Tamm states in a metal-organic microcavity[J]. Appl. Phys. Lett., 2012,100(6):062101.
KISHINO K,UNLU M S,CHYI J I,et al.. Resonant cavity-enhanced (RCE) photodetectors[J]. IEEE J. Quant. Electron., 1991,27(8):2025-2034.
HE Z C,ZHONG C M,SU S J,et al.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012,6(9):591-595.
YAO H F,CUI Y,YU R N,et al.. Design,synthesis,and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap[J]. Angew. Chem. Int. Ed. Engl., 2017,56(11):3045-3049.
Deep UV Detection: from Single-crystalline MgZnO to Amorphous Ga2O3
Photodetector with Broadband-narrowband Dual-function Detection Mode
Response Wavelength Characterization of Ag-doped Chalcogenide Glass Photodetectors
High-performance Self-powered Ultraviolet Photodetectors Based on Ferroelectric PbZr0.52Ti0.48O3 Thin Films
All-inorganic p-i-n Photodetector Based on Lead-free CuSCN/Cs3Bi2I6Br3 Nanofilm
Related Author
LIANG Huili
ZHU Rui
DU Xiaolong
MEI Zengxia
JIANG Yan
GAO Feng
LI Lin
LYU Songzhu
Related Institution
Institute of Physics, Chinese Academy of Sciences
Songshan Lake Materials Laboratory
Key Laboratory for Photonic and Electronic Bandgap Materials, Ministry of Education, School of Physics and Electronic Engineering, Harbin Normal University
Key Laboratory of Optoelectric Measurement and Optical Information Transmission Technology of Ministry of Education, Changchun University of Science and Technology
School of Photoelectric Engineering, Changchun University of Science and Technology