Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells
Device Fabrication and Physics|更新时间:2020-08-12
|
Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells
Chinese Journal of LuminescenceVol. 40, Issue 2, Pages: 215-223(2019)
作者机构:
1. 太原理工大学 新材料界面科学与工程教育部重点实验室, 山西 太原 030024
2. 中国科学院 可再生能源重点实验室, 广东 广州 510640
作者简介:
基金信息:
Supported by National Natural Science Foundation of China (61475110);Basic Research Project of Shanxi Province (201701D221079);CAS Key Laboratory of Renewable Energy(Y807k31001)
GAO Wen-hui, ZHAI Guang-mei, ZHANG Cai-feng etc. Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells[J]. Chinese Journal of Luminescence, 2019,40(2): 215-223
GAO Wen-hui, ZHAI Guang-mei, ZHANG Cai-feng etc. Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells[J]. Chinese Journal of Luminescence, 2019,40(2): 215-223 DOI: 10.3788/fgxb20194002.0215.
Effect of Surface Ligands and Device Configurations on Performance of PbS Colloidal Quantum Dot Solar Cells
surface chemistry and band energies of PbS colloidal quantum dots (CQDs) passivated with tetrabutylammonium iodide(PbS-TBAI) and 1
2-ethanedithiol(EDT) were analyzed by absorption spectroscopy
Fourier transform infrared spectroscopy and cyclic voltammetry measurements. Also
the photovoltaic performance and air stability of PbS CQDs/ZnO nanoparticles heterojunction solar cells using PbS-TBAI
PbS-EDT and PbS-TBAI/PbS-EDT films as active layers respectively were investigated. The results showed that both TBAI and EDT ligands could achieve good ligand exchange with original oleic acid ligands on the surface of PbS CQDs
while a small number of residual oleic acid molecules remained in the PbS CQDs films. The conduction band minimum and valence band maximum of the PbS CQDs treated with TBAI are -3.86 eV and -5.12 eV
while they can be upshifted to -3.74 eV and -4.99 eV
respectively
for the PbS CQDs treated with EDT. The PbS-TBAI/PbS-EDT device exhibited the highest power conversion efficiency of 4.43% among these three type of devices. With the increase of air exposure time
the PbS-TBAI/PbS-EDT device exhibited similar performance evolution to the PbS-TBAI device and achieved its best performance after three days of air exposure. However
the PbS-EDT device showed poor air stability and its efficiency was reduced to a quarter of its initial value after three days of air exposure.This work is not only capable of deepening the understanding of the performance evolution of PbS-CQD solar cells
but also capable of guiding the further optimization of these devices.
关键词
Keywords
references
YUAN M J,LIU M X,SARGENT E H. Colloidal quantum dot solids for solution-processed solar cells[J]. Nat. Energy, 2016,1(3):16016-1-9.
KIM T,PALMIANO E,LIANG R Z,et al.. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption[J]. Appl. Phys. Lett., 2017,110(22):223903-1-5.
LAN X Z,VOZNYY O,DE ARQUER F P G,et al.. 10.6% certified colloidal quantum dot solar cells via solvent-polarity-engineered halide passivation[J]. Nano Lett., 2016,16(7):4630-4634.
LPEZ A B C,VEGA A M,LPEZ A L. Next Generation of Photovoltaics[M]. Berlin,Heidelberg:Springer, 2012.
BEARD M C. Multiple exciton generation in semiconductor quantum dots[J]. J. Phys. Chem. Lett., 2011,2(11):1282-1288.
PIETRYGA J M,PARK Y S,LIM J,et al.. Spectroscopic and device aspects of nanocrystal quantum dots[J]. Chem. Rev., 2016,116(18):10513-10622.
SHULGA A G,PIVETEAU L,BISRI S Z,et al.. Double gate PbS quantum dot field-effect transistors for tuneable electrical characteristics[J]. Adv. Electron. Mater., 2016,2(4):1500467.
KAGAN C R,LIFSHITZ E,SARGENT E H,et al.. Building devices from colloidal quantum dots[J]. Science, 2016,353(6302):aac5523-1-9.
MCDONALD S A,KONSTANTATOS G,ZHANG S G,et al.. Solution-processed PbS quantum dot infrared photodetectors and photovoltaics[J]. Nat. Mater., 2005,4(2):138-142.
KIM G H,DE ARQUER F P G,YOON Y J,et al.. High-efficiency colloidal quantum dot photovoltaics via robust self-assembled monolayers[J]. Nano Lett., 2015,15(11):7691-7696.
LIU M X,VOZNYY O,SABATINI R,et al.. Hybrid organic-inorganic inks flatten the energy landscape in colloidal quantum dot solids[J]. Nat. Mater., 2016,16(2):258-263.
CAO Y M,STAVRINADIS A,LASANTA T,et al.. The role of surface passivation for efficient and photostable PbS quantum dot solar cells[J]. Nat. Energy, 2016,1(4):16035-1-23.
MA W L,SWISHER S L,EWERS T,et al.. Photovoltaic performance of ultrasmall PbSe quantum dots[J]. ACS Nano, 2011,5(10):8140-8147.
ZHAI G M,CHURCH C P,BREEZE A J,et al.. Quantum dot PbS0.9Se0.1/TiO2 heterojunction solar cells[J]. Nanotechnology, 2012,23(40):405401-1-7.
王恒,翟光美,张继涛,等. PbS量子点能级结构的尺寸和配体依赖性及其对异质结电池性能的影响[J]. 无机材料学报, 2016,31(9):915-922. WANG H,ZHAI G M,ZHANG J T,et al.. PbS quantum dots:size,ligand dependent energy level structures and their effects on the performance of heterojunction solar cells[J]. J. Inorgan. Mater., 2016,31(9):915-922. (in Chinese)
LAN X Z,VOZNYY O,KIANI A,et al.. Passivation using molecular halides increases quantum dot solar cell performance[J]. Adv. Mater., 2016,28(2):299-304.
CHUANG C H M,BROWN P R,BULOVIC' V,et al.. Improved performance and stability in quantum dot solar cells through band alignment engineering[J]. Nat. Mater., 2014,13(8):796-801.
ZHAI G M,BEZRYADINA A,BREEZE A J,et al.. Air stability of TiO2/PbS colloidal nanoparticle solar cells and its impact on power efficiency[J]. Appl. Phys. Lett., 2011,99(6):063512-1-3.
LIU D Y,KELLY T L. Perovskite solar cells with a planar heterojunction structure prepared using room-temperature solution processing techniques[J]. Nat. Photon., 2014,8(2):133-138.
HUANG Z,ZHAI G M,ZHANG Z M,et al.. Low cost and large scale synthesis of PbS quantum dots with hybrid surface passivation[J]. CrystEngComm, 2017,19(6):946-951.
解镕玮. PbS、FeS2纳米晶光电性能及在薄膜太阳能电池中的应用研究[D]. 太原:太原理工大学, 2015. XIE R W. The Optoelectronic Properties and Applications in Thin Film Solar Cells of PbS and Pyrite FeS2 Nanocrystals[D]. Taiyuan:Taiyuan University of Technology, 2015. (in Chinese)
ZHAI G M,XIE R W,WANG H,et al.. Effect of capping ligands on the optical properties and electronic energies of iron pyrite FeS2 nanocrystals and solid thin films[J]. J. Alloys Compd., 2016,674:9-15.
NING Z J,VOZNYY O,PAN J,et al.. Air-stable n-type colloidal quantum dot solids[J]. Nat. Mater., 2014,13(8):822-828.
STAVRINADIS A,PRADHAN S,PAPAGIORGIS P,et al.. Suppressing deep traps in PbS colloidal quantum dots via facile iodide substitutional doping for solar cells with efficiency >10%[J]. ACS Energy Lett., 2017,2(4):739-744.
GAO W H,ZHAI G M,ZHANG C F,et al.. Towards understanding the initial performance improvement of PbS quantum dot solar cells upon short-term air exposure[J]. RSC Adv., 2018,8(27):15149-15157.