CHEN Yue, HE Da-wei, WANG Yong-sheng etc. Hydrothermal Synthesis of Graphene-TiO<sub>2</sub> Nanotube Composites and Study of Photocatalytic Properties[J]. Chinese Journal of Luminescence, 2019,40(2): 177-182
CHEN Yue, HE Da-wei, WANG Yong-sheng etc. Hydrothermal Synthesis of Graphene-TiO<sub>2</sub> Nanotube Composites and Study of Photocatalytic Properties[J]. Chinese Journal of Luminescence, 2019,40(2): 177-182 DOI: 10.3788/fgxb20194002.0177.
Hydrothermal Synthesis of Graphene-TiO2 Nanotube Composites and Study of Photocatalytic Properties
A photocatalyst of titanium dioxide nanotube-graphene was prepared by hydrothermal method in this paper. The composites were characterized for further analyzation by X-ray diffractometry
scanning electron microscopy
transmission electron microscopy and Raman spectroscopy. The photocatalytic properties were tested. The results show that the photocatalytic performance of titanium dioxide nanotube-graphene is higher than that of pure titanium dioxide nanotubes. Graphene is combined with titanium dioxide nanotubes to act as an electron acceptor
and the carrier mobility is improved
thereby improving photocatalytic performance.
关键词
Keywords
references
CUI Y,KIM S N,JONES S E,et al.. Chemical functionalization of graphene enabled by phage displayed peptides[J]. Nano Lett., 2010,10(11):4559-4565.
AMBRUS Z,MOGYORSI K,SZALAI ,et al.. Low temperature synthesis,characterization and substrate-dependent photocatalytic activity of nanocrystalline TiO2 with tailor-made rutile to anatase ratio[J]. Appl. Catal. A Gen., 2008,340(2):153-161.
CHEN Y J,STATHATOS E,DIONYSIOU D D. Microstructure characterization and photocatalytic activity of mesoporous TiO2 films with ultrafine anatase nanocrystallites[J]. Surf. Coat. Technol., 2008,202(10):1944-1950.
NOVOSELOV K S,MCCANN E,MOROZOV S V,et al.. Unconventional quantum Hall effect and Berry's phase of 2 in bilayer graphene[J]. Nat. Phys., 2006,2(3):177-180.
WOAN K,PYRGIOTAKIS G,SIGMUND W. Photocatalytic carbon-nanotube-TiO2 composites[J]. Adv. Mater., 2009,21(21):2233-2239.
YAO Y,LI G H,CISTON S,et al.. Photoreactive TiO2/carbon nanotube composites:synthesis and reactivity[J]. Environ. Sci. Technol., 2008,42(13):4952-4957.
LONG Y Z,LU Y,HUANG Y,et al.. Effect of C60 on the photocatalytic activity of TiO2 nanorods[J]. J. Phys. Chem. C, 2009,113(31):13899-13905.
WANG W D,SILVA C G,FARIA J L. Photocatalytic degradation of chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts[J]. Appl. Catal. B Environ., 2007, 70(1-4):470-478.
HUMMERS JR W S,OFFEMAN R E. Preparation of graphitic oxide[J]. J. Am. Chem. Soc., 1958,80(6):1339.
BALACHANDRAN U,EROR N G. Raman spectra of titanium dioxide[J]. J. Solid State Chem., 1982,42(3):276-282.
KIM S W,KHAN R,KIM T J,et al.. Synthesis, characterization, and application of Zr, S co-doped TiO2 as visible-light active photocatalyst[J]. Bull. Korean Chem. Soc., 2008,29(6):1217-1223.
PERERA S D,MARIANO R G,VU K,et al.. Hydrothermal synthesis of graphene-TiO2 nanotube composites with enhanced photocatalytic activity[J]. ACS Catal., 2012,2(6):949-956.
KAMAT P V. Graphene-based nanoassemblies for energy conversion[J]. J. Phys. Chem. Lett., 2011,2(3):242-251.