LIU Yuan-yuan, DE Ge-ji-hu, WANG Xian. Controllable Synthesis and Upconversion Luminescence Properties of Yb<sup>3+</sup>/Er<sup>3+</sup> Codoped (<em>M</em>LaF<sub><em>n</em></sub>)<sub><em>x</em></sub> (<em>M</em>=0,K;<em>n</em>=3,4;<em>x</em>=1,1.5) of Nanomaterials[J]. Chinese Journal of Luminescence, 2019,40(2): 143-152
LIU Yuan-yuan, DE Ge-ji-hu, WANG Xian. Controllable Synthesis and Upconversion Luminescence Properties of Yb<sup>3+</sup>/Er<sup>3+</sup> Codoped (<em>M</em>LaF<sub><em>n</em></sub>)<sub><em>x</em></sub> (<em>M</em>=0,K;<em>n</em>=3,4;<em>x</em>=1,1.5) of Nanomaterials[J]. Chinese Journal of Luminescence, 2019,40(2): 143-152 DOI: 10.3788/fgxb20194002.0143.
Controllable Synthesis and Upconversion Luminescence Properties of Yb3+/Er3+ Codoped (MLaFn)x (M=0,K;n=3,4;x=1,1.5) of Nanomaterials
Upconversion nanocrystals(UPCNs) from hexagonal phase LaF
3
() to cubic phase KLaF
4
() or hexagonal phase(KLaF
4
)
1.5
() were prepared by simply tuning the molar ratio of KF to
RE
(
RE
=La
Yb
Er)
reaction temperature and reaction time in ethlene glycol(EG) and 1-hexanol (HA) mixed solvents
via
a facile hydro/solvothermal method. The -LaF
3
to -KLaF
4
or -(KLaF
4
)
1.5
transformation process was studied by X-ray diffraction(XRD)
fluorescence spectrophotometer with an external 980 nm single-wavelength diode laser and transmission electron microscopy(TEM) techniques. The results indicate that the hexagonal phase of LaF
3
nanosheet was synthesized when the ratio of KF/
RE
was 2.25. With the ratio of KF/
RE
increased to 3.00
the approximate spherical cubic phase of KLaF
4
was obtained. The cubic phase of KLaF
4
completely transforms into the hexagonal phase of (KLaF
4
)
1.5
when the ratio of KF/
RE
was 4.25. The red and green emission are corresponding to the transitions
4
S
3/2
2
H
11/2
4
I
15/2
(Green) at 522 nm and 544 nm
4
F
9/2
4
I
15/2
(Red) at 655 nm of Er
3+
ions
respectively.
关键词
Keywords
references
AUZEL F. Upconversion and anti-Stokes processes with f and d Ions in solids[J]. Chem. Rev., 2004,104(1):139-174.
DOWNING E,HESSELINK L,RALSTON J,et al.. A three-color,solid-state,three-dimensional display[J]. Science, 1996,273(5279):1185-1189.
OSTROWSKI A D,CHAN E M,GARGAS D J,et al.. Controlled synthesis and single-particle imaging of bright,sub-10 nm lanthanide-doped upconverting nanocrystals[J]. ACS Nano, 2012,6(3):2686-2692.
YI G S,LU H C,ZHAO S Y,et al.. Synthesis,characterization,and biological application of size-controlled nanocrystalline NaYF4:Yb, Er infrared-to-visible up-conversion phosphors[J]. Nano Lett., 2004,4(11):2191-2196.
VAN DE RIJKE F,ZIJLMANS H,LI S,et al.. Up-converting phosphor reporters for nucleic acid microarrays[J]. Nat. Biotechnol., 2001,19(3):273-276.
VENNERBERG D,LIN Z Q. Upconversion nanocrystals:synthesis, properties, assembly and applications[J]. Sci. Adv. Mater., 2011,3(1):26-40.
ZHANG C,ZHOU H P,LIAO L Y,et al.. Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene:rewritable optical storage with nondestructive readout[J]. Adv. Mater., 2010,22(5):633-637.
KIM W J,NYK M,PRASAD P N. Color-coded multilayer photopatterned microstructures using lanthanide(Ⅲ) ion co-doped NaYF4 nanoparticles with upconversion luminescence for possible applications in security[J]. Nanotechnology, 2009,20(18):185301-1-7.
ZHANG G,DONG H,WANG D,et al.. Investigations on multi-photon emissions of Nd3+-sensitized core/shell nanoparticles[J]. J. Rare Earths, 2017,35(1):1-6.
WANG X,ZHUANG J,PENG Q,et al.. A general strategy for nanocrystal synthesis[J]. Nature, 2005,437(7055):121-124.
LIU Y X,WANG D S,SHI J X,et al.. Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals[J]. Angew. Chem., 2013,125(16):4462-4465.
YU X F,LI M,XIE M Y,et al.. Dopant-controlled synthesis of water-soluble hexagonal NaYF4 nanorods with efficient upconversion fluorescence for multicolor bioimaging[J]. Nano Res., 2010,3(1):51-60.
LIU D M,XU X X,DU Y,et al.. Three-dimensional controlled growth of monodisperse sub-50 nm heterogeneous nanocrystals[J]. Nat. Commun., 2016,7:10254-1-8.
CARGNELLO M,GORDON T R,MURRAY C B. Solution-phase synthesis of titanium dioxide nanoparticles and nanocrystals[J]. Chem. Rev., 2014,114(19):9319-9345.
DING M Y,ZHU F,MA D Y,et al.. KF-mediated controlled-synthesis of potassium ytterbium fluorides (doped with Er3+) with phase-dependent upconversion luminescence[J]. CrystEngComm, 2015,17(37):7182-7190.
NIE L,SHEN Y X,ZHANG X,et al.. Selective synthesis of LaF3 and NaLaF4 nanocrystals via lanthanide ion doping[J]. J. Mater. Chem. C, 2017,5(35):9188-9193.
李洋洋,李大光,张丹,等. 小尺寸NaLuF4:Yb3+/Tm3+纳米晶的生长及上转换发光[J]. 发光学报, 2018,39(6):764-770. LI Y Y,LI D G,ZHANG D,et al.. Growth process and upconversion luminescence of NaLuF4:Yb3+/Tm3+ nanocrystals[J]. Chin. J. Lumin., 2018,39(6):764-770. (in Chinese)
WANG F,LIU X G. Multicolor tuning of lanthanide-doped nanoparticles by single wavelength excitation[J]. Acc. Chem. Res., 2014,47(4):1378-1385.
SUN L D,WANG Y F,YAN C H. Paradigms and challenges for bioapplication of rare earth upconversion luminescent nanoparticles:small size and tunable emission/excitation spectra[J]. Acc. Chem. Res., 2014,47(4):1001-1009.
DONG H,SUN L D,YAN C H. Basic understanding of the lanthanide related upconversion emissions[J]. Nanoscale, 2013,5(13):5703-5714.
ZHANG Y W,SUN X,SI R,et al.. Single-crystalline and monodisperse LaF3 triangular nanoplates from a single-source precursor[J]. J. Am. Chem. Soc., 2005,127(10):3260-3261.
BAI X,LI D,LIU Q,et al.. Concentration-controlled emission in LaF3:Yb3+/Tm3+ nanocrystals:switching from UV to NIR regions[J]. J. Mater. Chem., 2012,22(47):24698-24704.
SUYVER J F,GRIMM J,VAN VEEN M K,et al.. Upconversion spectroscopy and properties of NaYF4 doped with Er3+, Tm3+ and/or Yb3+[J]. J. Lumin., 2006,117(1):1-12.
GROEN C P,OSKAM A,KOVCS A. Theoretical study of mixed MLaX4(M=Na, K, Cs; X=F, Cl, Br, I) rare earth/alkali metal halide complexes[J]. Inorg. Chem., 2003,42(3):851-858.
AHMAD S,PRAKASH G V,NAGARAJAN R. Hexagonally ordered KLaF4 host:phase-controlled synthesis and luminescence studies[J]. Inorg. Chem., 2012,51(23):12748-12754.
RENERO-LECUNA C,MARTN-RODRGUEZ R,VALIENTE R,et al.. Origin of the high upconversion green luminescence efficiency in -NaYF4:2%Er3+,20%Yb3+[J]. Chem. Mater., 2011,23(15):3442-3448.
TYAGI N,REDDY A A,NAGARAJAN R. KLaF4:Er an efficient upconversion phosphor[J]. Opt. Mater., 2010,33(1):42-47.
DAS S,REDDY A A,AHMAD S,et al.. Synthesis and optical characterization of strong red light emitting KLaF4:Eu3+ nanophosphors[J]. Chem. Phys. Lett., 2011,508(1-3):117-120.
DU Y P,ZHANG Y W,SUN L D,et al.. Optically active uniform potassium and lithium rare earth fluoride nanocrystals derived from metal trifluroacetate precursors[J]. Dalton. Trans., 2009,(40):8574-8581.
LIU R,TU D T,LIU Y S,et al.. Controlled synthesis and optical spectroscopy of lanthanide-doped KLaF4 nanocrystals[J]. Nanoscale, 2012,4(15):4485-4491.
赖文彬,周海芳,程树英,等. Er3+/Yb3+共掺KLaF4纳米晶的制备和上转换发光[J]. 发光学报, 2013,34(10):1259-1263. LAI W B,ZHOU H F,CHENG S Y,et al.. Preparation and upconversion luminescence of Er3+/Yb3+ codoped KLaF4 nanocrystals[J]. Chin. J. Lumin., 2013,34(10):1259-1263. (in Chinese)
MAI H X,ZHANG Y W,SI R,et al.. High-quality sodium rare-earth fluoride nanocrystals:controlled synthesis and optical properties[J]. J. Am. Chem. Soc., 2006,128(19):6426-6436.
王猛. 稀土上转换发光纳米材料的合成及应用[M]. 沈阳:东北大学出版社, 2015. WANG M. Rare Earth Doped Upconversion Luminescent Nanomaterials:Synthesis and Applications[M]. Shenyang:Dongbei University Press, 2015. (in Chinese)