浏览全部资源
扫码关注微信
1. 南京航空航天大学 能源与动力学院,江苏 南京,210016
2. 南京航空航天大学材料科学与技术学院 江苏省能量转换材料与技术重点实验室,江苏 南京,210016
Received:15 March 2018,
Revised:25 May 2018,
Published Online:13 June 2018,
Published:05 January 2019
移动端阅览
孙孪鸿, 沈鸿烈, 黄护林等. 硒化温度对共溅射法制备的CZTSSe薄膜与电池性能的影响[J]. 发光学报, 2019,40(1): 82-88
SUN Luan-hong, SHEN Hong-lie, HUANG Hu-lin etc. Influence of Selenization Temperature on Co-sputtered CZTSSe Thin Films and Related Solar Cells[J]. Chinese Journal of Luminescence, 2019,40(1): 82-88
孙孪鸿, 沈鸿烈, 黄护林等. 硒化温度对共溅射法制备的CZTSSe薄膜与电池性能的影响[J]. 发光学报, 2019,40(1): 82-88 DOI: 10.3788/fgxb20194001.0082.
SUN Luan-hong, SHEN Hong-lie, HUANG Hu-lin etc. Influence of Selenization Temperature on Co-sputtered CZTSSe Thin Films and Related Solar Cells[J]. Chinese Journal of Luminescence, 2019,40(1): 82-88 DOI: 10.3788/fgxb20194001.0082.
采用共溅射法结合后硒化成功制备出CZTSSe薄膜,主要研究了不同的硒化温度对CZTSSe薄膜与电池性能的影响。分别采用X射线衍射仪、拉曼光谱仪、扫描电子显微镜、紫外-可见-近红外分光光度计、霍尔效应测量仪及数字电源表对不同硒化温度下制备的CZTSSe薄膜的结构、形貌、光电与太阳电池性能进行了表征与分析。结果表明,当硒化温度为580℃时,CZTSSe薄膜的结晶性最好,薄膜表面均匀致密且其电阻率和载流子浓度达到最小值和最大值,分别为1.57 cm和8.210
17
cm
-3
,该硒化温度下制备得到的CZTSSe太阳电池的短路电流和转换效率最高达到30.68 mA/cm
2
和5.17%。相对于550℃和600℃硒化温度下的CZTSSe太阳电池,其光电转换效率分别提高了36%和6%。另外,随着硒化温度的升高,CZTSSe薄膜在XRD中的(112)峰位和Raman中的A1模式振动峰位都向小衍射角和短波数方向移动,薄膜的禁带宽度也从1.26 eV减小至1.21 eV。
CZTSSe thin films were fabricated by co-sputtering method followed by selenization. The effect of selenization temperature on CZTSSe thin films and its solar cell performance was studied. The structure
morphology
optoelectronic and solar cell performance were characterized by X-ray diffraction
Raman
Scanning electron microscope (SEM)
ultraviolet-visible-near infrared (UV-Vis-NIR) spectroscopy
Hall effect measurement and digital source meter
respectively. The crystallinity of CZTSSe thin films showed the best crystallinity when the selenization temperature was 580℃ and the film surface was uniform and dense. The resistivity and carrier concentration reached minimum and maximum values of 1.57 cm and 8.210
17
cm
-3
respectively. The short-circuit current and conversion efficiency of the CZTSSe solar cells prepared at this temperature were up to 30.68 mA/cm
2
and 5.17%
respectively. Compared with the solar cells selenized at 550℃ and 600℃
the conversion efficiency of CZTSSe solar cells selenized at 580℃ increased by 36% and 6% respectively. With increasing selenization temperature
the position of the (112) peak in XRD patterns and Raman peaks corresponding to A1 mode systematically shifted to lower diffraction angle and wavenumbers. Meanwhile
the band gap of the films decreased from 1.26 eV to 1.21 eV.
张雪,韩洋,柴双志,等. Cu2ZnSn(S,Se)4薄膜太阳电池研究进展[J]. 物理化学学报, 2016,32(6):1330-1346. ZHANG X,HAN Y,CHAI S Z,et al.. Advances in Cu2ZnSn(S,Se)4 thin film solar cells[J]. Acta Phys.-Chim. Sinica, 2016,32(6):1330-1346. (in Chinese)
KATAGIRI H,SAITOH K,WASHIO T,et al.. Development of thin film solar cell based on Cu2ZnSnS4 thin films[J]. Sol. Energy Mater. Sol. Cells, 2001,65(1):141-148.
SUN K W,LIU F Y,YAN C,et al.. Influence of sodium incorporation on kesterite Cu2ZnSnS4 solar cells fabricated on stainless steel substrates[J]. Sol. Energy Mater. Sol. Cells, 2016,157:565-571.
FELLA C M,ROMANYUK Y E,TIWARI A N. Technological status of Cu2ZnSn(S,Se)4 thin film solar cells[J]. Sol. Energy Mater. Sol. Cells, 2013,119:276-277.
JIANG F,SHEN H L,WANG W. Optical and electrical properties of Cu2ZnSnS4 film prepared by sulfurization method[J]. J. Electron. Mater., 2012,41(8):2204-2209.
GAO C,SHEN H L,JIANG F,et al.. Preparation of Cu2ZnSnS4 film by sulfurizing solution deposited precursors[J]. Appl. Surf. Sci., 2012,261:189-192.
KIM S,KIM K M,TAMPO H,et al.. Ge-incorporated Cu2ZnSnSe4 thin-film solar cells with efficiency greater than 10%[J]. Sol. Energy Mater. Sol. Cells, 2016,144:488-492.
BAG S,GUNAWAN O,GOKMEN T,et al.. Hydrazine-processed Ge-substituted CZTSe solar cells[J]. Chem. Mater., 2016,24(23):4588-4593.
SINGH O P,VIJAYAN N,SOOD K N,et al.. Controlled substitution of S by Se in reactively sputtered CZTSSe thin films for solar cells[J]. J. Alloys Compd., 2015,648:595-600.
RANJBAR S,MENON M R R,FERNANDES P A,et al.. Effect of selenization conditions on the growth and properties of Cu2ZnSn(S,Se)4 thin films[J]. Thin Solid Films, 2015,582:188-192.
LOKHANDE A C,CHALAPATHY R B V,JANG J S,et al.. Fabrication of pulsed laser deposited Ge doped CZTSSe thin film based solar cells:influence of selenization treatment[J]. Sol. Energy Mater. Sol. Cells, 2017,161:355-367.
LI J Z,SHEN H L,WANG W,et al.. Improvement of CZTSSe thin film solar cell by introducing a three-layer structure precursor[J]. Mater. Lett., 2016,172:90-93.
WANGPERAWONG A,KING J S,HERRON S M,et al.. Aqueous bath process for deposition of Cu2ZnSnS4 photovoltaic absorbers[J]. Thin Solid Films, 2011,519(8):2488-2492.
MA R X,YANG F,LI S N,et al.. Fabrication of Cu2ZnSn(S,Se)4 (CZTSSe) absorber films based on solid-phase synthesis and blade coating processes[J]. Appl. Surf. Sci., 2016,368:8-15.
YOO H,KIM J H. Comparative study of Cu2ZnSnS4 film growth[J]. Sol. Energy Mater. Sol. Cells, 2011,95(1):239-244.
FERNANDES P A,SALOM P M P,DA CUNHA A F. Growth and Raman scattering characterization of Cu2ZnSnS4 thin films[J]. Thin Solid Films, 2009,517(7):2519-2523.
SCRAGG J J,ERICSON T,KUBART T,et al.. Chemical insights into the instability of Cu2ZnSnS4 films during annealing[J]. Chem. Mater., 2012,23(20):4625-4633.
LOKHANDE A C,CHALAPATHY R B V,HE M R,et al.. Development of Cu2SnS3 (CTS) thin film solar cells by physical techniques:a status review[J]. Sol. Energy Mater. Sol. Cells, 2016,153:84-107.
KODIGALA S R. Thin Film Solar Cells from Earth Abundant Materials:Growth and Characterization of Cu2(ZnSn)(SSe)4 Thin Films and Their Solar Cells[M]. Amsterdam:Elsevier, 2014.
CHEN S Y,WALSH A,GONG X G,et al.. Classification of lattice defects in the kesterite Cu2ZnSnS4 and Cu2ZnSnSe4 earth-abundant solar cell absorbers[J]. Adv. Mater., 2013,25(11):1522-1539.
SIEBENTRITT S,SCHORR S. Kesterites-a challenging material for solar cells[J]. Prog. Photovolt.:Res. Appl., 2012,20(5):512-519.
WU S H,HUANG K T,CHEN H J,et al.. Cu2ZnSn(SxSe1-x)4 thin film solar cell with high sulfur content (x approximately 0.4) and low Voc deficit prepared using a postsulfurization process[J]. Sol. Energy Mater. Sol. Cells, 2018,175:89-95.
XU J,TANG Y B,CHEN X,et al.. Synthesis of homogeneously alloyed Cu2-x(SySe1-y) nanowire bundles with tunable compositions and bandgaps[J]. Adv. Funct. Mater., 2010,20(23):4190-4195.
0
Views
288
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution