浏览全部资源
扫码关注微信
河北大学物理科学与技术学院 河北省光电信息材料重点实验室 新能源光电器件国家地方联合工程实验室,河北 保定,071002
Received:20 September 2018,
Revised:05 November 2018,
Published:05 January 2019
移动端阅览
汪欣, 李晓晓, 李天义等. X射线激发深层肌体温度传感材料La<sub>2</sub>O<sub>2</sub>S:Yb<sup>3+</sup>,Er<sup>3+</sup>的测温性质研究[J]. 发光学报, 2019,40(1): 30-38
WANG Xin, LI Xiao-xiao, LI Tian-yi etc. Thermometric Properties of Deep Tissue Temperature Sensing Material La<sub>2</sub>O<sub>2</sub>S: Yb<sup>3+</sup>,Er<sup>3+</sup> Excited by X-ray[J]. Chinese Journal of Luminescence, 2019,40(1): 30-38
汪欣, 李晓晓, 李天义等. X射线激发深层肌体温度传感材料La<sub>2</sub>O<sub>2</sub>S:Yb<sup>3+</sup>,Er<sup>3+</sup>的测温性质研究[J]. 发光学报, 2019,40(1): 30-38 DOI: 10.3788/fgxb20194001.0030.
WANG Xin, LI Xiao-xiao, LI Tian-yi etc. Thermometric Properties of Deep Tissue Temperature Sensing Material La<sub>2</sub>O<sub>2</sub>S: Yb<sup>3+</sup>,Er<sup>3+</sup> Excited by X-ray[J]. Chinese Journal of Luminescence, 2019,40(1): 30-38 DOI: 10.3788/fgxb20194001.0030.
Yb
3+
、Er
3+
共掺杂上转换发光材料能被红外光激发,可用于肌体内部温度测量,但上转换材料效率较低,无法实现较深组织温度探测。考虑到Er
3+
能级可被多种光源布居,较好肌体穿透性的X射线无疑是理想的激发源。本文首次报道了一种新型的深层肌体温度传感材料La
2
O
2
S:Yb
3+
,Er
3+
。数据表明,X射线激发下,在不同温度下的两个绿光发射强度比符合玻尔兹曼分布,最高测温灵敏度达到了0.011 5 K
-1
。我们相信Yb
3+
、Er
3+
共掺的La
2
O
2
S是可以应用于临床的理想测温材料。
Yb
3+
Er
3+
co-doped up-conversion luminescent materials can be used to measure the internal temperature of tissue under infrared light excitation
but the lower efficiency of up-conversion materials makes it impossible to detect deep tissue temperature. Considering that Er
3+
energy levels can be populated by various light sources
X-ray is undoubtedly an ideal excitation source with better penetration. In this article
we first reported a novel deep tissue temperature sensing material La
2
O
2
S:Yb
3+
Er
3+
. The data show that the fluorescence intensity ratio of the two green levels at different temperatures conforms to Boltzmann distribution under X-ray excitation
and the maximum sensor sensitivity is 0.011 5 K
-1
. We believe that Yb
3+
Er
3+
co-doped La
2
O
2
S can be used as an ideal temperature measuring material for clinical application.
吴中立,吴红梅,姚震,等. GdNbO4:Er3+/Yb3+荧光粉的上转换发光与温度特性[J]. 发光学报, 2017,38(9):1129-1135. WU Z L,WU H M,YAO Z,et al.. Upconversion luminescence and temperature characteristics of GdNbO4:Er3+/Yb3+ phosphors[J]. Chin. J. Lumin., 2017,38(9):1129-1135. (in Chinese)
林杨杨,陈铠炀,唐霞艳,等. Er3+/Yb3+共掺杂氧氟硼硅酸盐微晶玻璃绿色上转换发光的温度特性[J]. 发光学报, 2015,36(9):1001-1005. LIN Y Y,CHEN K Y,TANG X Z,et al.. Temperature characteristic of green upconversion luminescence in Er3+/Yb3+ codoped oxyfluoride borosilicate glass ceramics[J]. Chin. J. Lumin., 2015,36(9):1001-1005. (in Chinese)
LI D Y,TIAN L L,HUANG Z,et al.. Optical temperature sensor based on infrared excited green upconversion emission in hexagonal phase NaLuF4:Yb3+/Er3+ nanorods[J]. J. Nanosci. Nanotechnol., 2016,16(4):3641-3645.
ZHENG H,CHEN B J,YU H Q,et al.. Microwave-assisted hydrothermal synthesis and temperature sensing application of Er3+/Yb3+ doped NaY(WO4)2 microstructures[J]. J. Colloid Interface Sci., 2014,420:27-34.
SAVCHUK O A,CARVAJAL J J,CASCALES C,et al.. Benefits of silica core-shell structures on the temperature sensing properties of Er,Yb:GdVO4 up-conversion nanoparticles[J]. ACS Appl. Mater. Interfaces, 2016,8(11):7266-7273.
ARAI K,HONDA N,MORI T,et al.. Sensitivity-enhancing scheme of a polarimetric heterodyne sensor using a birefringent fiber loop[J]. Opt. Lett., 1990,15(19):1103-1105.
ZHANG W W,WANG G Y,BAXTER G W,et al.. Methods for broadband spectral analysis:intrinsic fluorescence temperature sensing as an example[J]. Appl. Spectrosc., 2017,71(6):1256-1262.
GAO Y,HUANG F,LIN H,et al.. A novel optical thermometry strategy based on diverse thermal response from two intervalence charge transfer states[J]. Adv. Funct. Mater., 2016,26(18):3139-3145.
DONG B,HUA R N,CAO B S,et al.. Size dependence of the upconverted luminescence of NaYF4:Er,Yb microspheres for use in ratiometric thermometry[J]. Phys. Chem. Chem. Phys., 2014,16(37):20009-20012.
FANG H W,WEI X T,ZHOU S S,et al.. Terbium and holmium codoped yttrium phosphate as non-contact optical temperature sensors[J]. RSC Adv., 2017,7(17):10200-10205.
VETRONE F,NACCACHE R,ZAMARRN A,et al.. Temperature sensing using fluorescent nanothermometers[J]. ACS Nano, 2010,4(6):3254-3258.
SINGH S K,KUMAR K,RAI S B. Er3+/Yb3+ codoped Gd2O3 nano-phosphor for optical thermometry[J]. Sens. Actuators A:Phys., 2009,149(1):16-20.
JIANG S,ZENG P,LIAO L Q,et al.. Optical thermometry based on upconverted luminescence in transparent glass ceramics containing NaYF4:Yb3+/Er3+ nanocrystals[J]. J. Alloys Compd., 2014,617:538-541.
DUBEY A,SONI A K,KUMARI A,et al.. Enhanced green upconversion emission in NaYF4:Er3+/Yb3+/Li+ phosphors for optical thermometry[J]. J. Alloys Compd., 2017,693:194-200.
MUKHOPADHYAY L,RAI V K,BOKOLIA R,et al.. 980 nm excited Er3+/Yb3+/Li+/Ba2+:NaZnPO4 upconverting phosphors in optical thermometry[J]. J. Lumin., 2017,187:368-377.
YANG X X,FU Z L,YANG Y M,et al.. Optical temperature sensing behavior of high-efficiency upconversion:Er3+-Yb3+ Co-doped NaY(MoO4)2 phosphor[J]. J. Am. Ceram. Soc., 2015,98(8):2595-2600.
MADSEN S J,SUN C H,TROMBERG B J,et al.. Repetitive 5-aminolevulinic acid-mediated photodynamic therapy on human glioma spheroids[J]. J. Neurooncol., 2003,62(3):243-250.
ORION E,MATZ H,WOLFR. Interferons:unapproved uses,dosages,or indications[J]. Clin. Dermatol., 2002,20(5):493-504.
YANG Y M,MI C,JIAO F Y,et al.. A novel multifunctional upconversion phosphor:Yb3+/Er3+ codoped La2S3[J]. J. Am. Ceram. Soc., 2014,97(6):1769-1775.
LIU Y F,CHEN W,WANG S P,et al.. Investigation of water-soluble X-ray luminescence nanoparticles for photodynamic activation[J]. Appl. Phys. Lett., 2008,92(4):043901-1-3.
RAHMAN W N,BISHARA N,ACKERLY T,et al.. Enhancement of radiation effects by gold nanoparticles for superficial radiation therapy[J]. Nanomed.:Nanotechnol. Biol. Med., 2009,5(2):136-142.
CARTER J D,CHENG N N,QU Y Q,et al.. Nanoscale energy deposition by X-ray absorbing nanostructures[J]. J. Phys. Chem. B, 2007,111(40):11622-11625.
BRIXNER L H. New X-ray phosphors[J]. Mater. Chem. Phys., 1987,16(3-4):253-281.
CHEN H Y,PATRICK A L,YANG Z Q,et al.. High-resolution chemical imaging through tissue with an X-ray scintillator sensor[J]. Anal. Chem., 2011,83(13):5045-5049.
YANG Y M,MI C. Highly sensitive optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2(WO4)3:Yb3+,Er3+ phosphor[C]. International Conference on Optical Instruments and Technology:Optical Sensors and Applications,Beijing, 2013.
LIU G G,FU L L,GAO Z Y,et al.. Investigation into the temperature sensing behavior of Yb3+ sensitized Er3+ doped Y2O3,YAG and LaAlO3 phosphors[J]. RSC Adv., 2015,5(64):51820-51827.
YANG Y M,MI C,YU F,et al.. Optical thermometry based on the upconversion fluorescence from Yb3+/Er3+ codoped La2O2S phosphor[J]. Ceram. Int., 2013,40(7):9875-9880.
LI X D,SONG Y J,YANG Y M,et al.. Structure and optical thermometry characterization of Er3+/Yb3+ co-doped BaGd2CuO5[J]. J. Nanosci. Nanotechnol., 2016,16(4):3542-3546.
刘延洲,杨艳民,郭彦明,等. Er3+:Yb3+共掺杂BaGd2ZnO5纳米晶体上转换光学温度传感[J]. 光谱学与光谱分析, 2015,35(2):329-333. LIU Y Z,YANG Y M,GUO Y M,et al.. Er3+:Yb3+ Co-doped nanocrystals BaGd2 ZnO5 of Up-conversion optical temperature sensing[J]. Spectrosc. Spectr. Anal., 2015,35(2):329-333. (in Chinese)
MAURICE E,MONNOM G,DUSSARDIER B,et al.. Erbium-doped silica fibers for intrinsic fiber-optic temperature sensors[J]. Appl. Opt., 1995,34(34):8019-8025.
SHINN M D,SIBLEY W A,DREXHAGE M G,et al.. Optical transitions of Er3+ ions in fluorozirconate glass[J]. Phys. Rev. B, 1983,27(11):6635-6648.
WADE S A,COLLINS S F,BAXTER G W. Fluorescence intensity ratio technique for optical fiber point temperature sensing[J]. J. Appl. Phys., 2003,94(8):4743-4756.
MACIEL G S,MENEZES L D,GOMES A S L,et al.. Temperature sensor based on frequency upconversion in Er3+ -doped fluoroindate glass[J]. IEEE Photon. Technol. Lett., 1995,7(12):1474-1476.
CHEN Y,CHEN G H,LIU X Y,et al.. Enhanced up-conversion luminescence and optical thermometry characteristics of Er3+/Yb3+ co-doped transparent phosphate glass-ceramics[J]. J. Lumin., 2018,195:314-320.
LI X M,CAO J K,WEI Y L,et al.. Optical thermometry based on up-conversion luminescence behavior of Er3+ -doped transparent Sr2YbF7 glass-ceramics[J]. J. Am. Ceram. Soc., 2015,98(12):3824-3830.
YU H,LI S,QI Y S,et al.. Optical thermometry based on up-conversion emission behavior of Ba2LaF7 nano-crystals embedded in glass matrix[J]. J. Lumin., 2018,194:433-439.
CAI J J,WEI X T,HU F F,et al.. Up-conversion luminescence and optical thermometry properties of transparent glass ceramics containing CaF2:Yb3+/Er3+ nanocrystals[J]. Ceram. Int., 2016,42(12):13990-13995.
CAO J K,CHEN W P,XU D K,et al.. Wide-range thermometry based on green up-conversion of Yb3+/Er3+ co-doped KLu2F7 transparent bulk oxyfluoride glass ceramics[J]. J. Lumin., 2018,194:219-224.
CAO J K,HU F F,CHEN L P,et al.. Optical thermometry based on up-conversion luminescence behavior of Er3+-doped KYb2F7 nano-crystals in bulk glass ceramics[J]. J. Alloys Compd., 2017,693:326-331.
LI X M,CAO J K,HU F F,et al.. Transparent Na5Gd9F32:Er3+ glass-ceramics:enhanced up-conversion luminescence and applications in optical temperature sensors[J]. RSC Adv., 2017,7(56):35147-35153.
HU F F,CAO J K,WEI X T,et al.. Self-crystallized novel transparent Na5Yb9F32:Er3+ glass-ceramics for optical thermometry and spectral conversion[J]. J. Alloys Compd., 2017,722:669-675.
ZOU Z S,WU T,LU H,et al.. Structure,luminescence and temperature sensing in rare earth doped glass ceramics containing NaY(WO4)2 nanocrystals[J]. RSC Adv., 2018,8(14):7679-7686.
HU F F,CAO J K,WEI X T,et al.. Luminescence properties of Er3+-doped transparent NaYb2F7 glass-ceramics for optical thermometry and spectral conversion[J]. J. Mater. Chem. C, 2016,4(42):9976-9985.
CHEN D Q,LIU S,LI X Y,et al.. Gd-based oxyfluoride glass ceramics:phase transformation,optical spectroscopy and upconverting temperature sensing[J]. J. Eur. Ceram. Soc., 2017,37(13):4083-4094.
CHEN D Q,WAN Z Y,ZHOU Y,et al.. Bulk glass ceramics containing Yb3+/Er3+:-NaGdF4 nanocrystals:phase-separation-controlled crystallization,optical spectroscopy and upconverted temperature sensing behavior[J]. J. Alloys Compd., 2015,638:21-28.
LI C R,DONG B,LI S F,et al.. Er3+-Yb3+ co-doped silicate glass for optical temperature sensor[J]. Chem. Phys. Lett., 2007,443(4-6):426-429.
RAKOV N,MACIEL G S. Three-photon upconversion and optical thermometry characterization of Er3+:Yb3+ co-doped yttrium silicate powders[J]. Sens. Actuators B:Chem., 2012,164(1):96-100.
杨艳民,焦福运,苏红新,等. Yb3+/Er3+共掺BaGd2ZnO5上转换发光动力学过程的研究[J]. 光谱学与光谱分析, 2012, 2(10):2637-2641. YANG Y M,JIAO F Y,SU H X,et al.. Preparation and up-conversion luminescence dynamic process of Yb3+/Er3+ co-doped BaGd2ZnO5[J]. Spectrosc. Spectr. Anal., 2012,32(10):2637-2641. (in Chinese)
JUDD B R. Optical absorption intensities of rare-earth ions[J]. Phys. Rev., 1962,127(3):750-761.
OFELT G S. Intensities of crystal spectra of rare-earth ions[J]. J. Chem. Phys., 1962,37(3):511-520.
JRGENSEN C K,JUDD B R. Hypersensitive pseudoquadrupole transitions in lanthanides[J]. Mol. Phys., 1964,8(3):281-290.
0
Views
180
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution