XU De-qian, XU Jia-xin, ZHUANG Shi-wei etc. Effect of Reaction Pressure Onmorphology Anisotropy of GaSb/GaAs Quantum Dots[J]. Chinese Journal of Luminescence, 2019,40(1): 17-22
XU De-qian, XU Jia-xin, ZHUANG Shi-wei etc. Effect of Reaction Pressure Onmorphology Anisotropy of GaSb/GaAs Quantum Dots[J]. Chinese Journal of Luminescence, 2019,40(1): 17-22 DOI: 10.3788/fgxb20194001.0017.
Effect of Reaction Pressure Onmorphology Anisotropy of GaSb/GaAs Quantum Dots
GaSb quantum dots were directly grown on (001) GaAs substrates by metal organic chemical vapor deposition. The effect of reaction chamber pressure on the size anisotropy of GaSb/GaAs quantum dots was analyzed. By the Sb surface treatment
a floating layer of Sb-Sb with low surface energy is formed on a GaAs substrate to achieve growth of GaSb quantum dots with an interfical misfit(IMF) growth mode. The morphologies of GaSb quantum dots were characterized by atomic force microscopy (AFM)
and the results showed that the anisotropy of GaSb quantum dots is significant and elongated along the[110] direction. With the reaction pressure of 10 kPa
the aspect ratio of the asymmetric island caused by IMF growth mode is more than 3. Because of the low energy for (111) sidewalls
the GaSb quantum dots preferentially grow up along the[110]
direction rather than the[110] direction. When eaction pressure is reduced to 4 kPa
the density of quantum dots increases to 8.310
9
cm
-2
. The shape of the quantum dots transforms into a symmetrical hemisphere and the aspect ratio is approximately 1. Because the low pressure reduces the activation energy of the atoms and increases the diffusion length
the anisotropy of GaSb quantum dots can be effectively improved.
关键词
Keywords
references
NAINANI A,IRISAWA T,YUAN Z,et al.. Optimization of the Al2O3/GaSb interface and a high-mobility GaSb pMOSFET[J]. IEEE Trans. Elect. Dev., 2011,58(10):3407-3415.
BURKE R A,WENG X J,KUO M W,et al.. Growth and characterization of unintentionally doped GaSb nanowires[J]. J. Electron. Mater., 2010,39(4):355-364.
张仲义,秦素英,魏相飞. InAs/AlSb/GaSb量子阱中的双色光吸收[J]. 发光学报, 2017,38(7):930-935. ZHANG Z Y,QIN S Y,WEI X F. Two color optical absorption in InAs/AlSb/GaSb quantum well system[J].Chin. J. Lumin., 2017,38(7):930-935. (in Chinese)
戎佳敏,邢恩博,赵帅,等. 2m GaSb基低垂直发散角布拉格反射波导激光器优化设计[J]. 发光学报, 2015,36(12):1434-1439. RONG J M,XING E B,ZHAO S,et al.. Modeling of 2m GaSb based bragg reflection waveguide lasers with ultra-low vertical divergence[J]. Chin. J. Lumin., 2015,36(12):1434-1439. (in Chinese)
TATEBAYASHI J,LIANG B L,BUSSIAN D A,et al.. Formation and optical characteristics of type-Ⅱ strain-relieved GaSb/GaAs quantum dots by using an interfacial misfit growth mode[J]. IEEE Trans. Nanotechnol., 2009,8(2):269-274.
WANG Y,RUTERANA P,KRET S,et al.. The source of the threading dislocation in GaSb/GaAs hetero-structures and their propagation mechanism[J]. Appl. Phys. Lett., 2013,102(5):052102-1-5.
GUTIRREZ M,ARAUJO D,JURCZAK P,et al.. Solid solution strengthening in GaSb/GaAs:a mode to reduce the TD density through Be-doping[J]. Appl. Phys. Lett., 2017,110(9):131911.
WANG Y,RUTERANA P,CHEN J,et al.. Antimony-mediated control of misfit dislocations and strain at the highly lattice mismatched GaSb/GaAs interface[J]. ACS Appl. Mater. Interfaces, 2013,5(19):9760-9764.
TAN K H,JIA B W,LOKE W K,et al.. Formation of interfacial misfit dislocation in GaSb/GaAs heteroepitaxy via anion exchange process[J]. J. Cryst. Growth, 2015,427:80-86.
KIM J H,SEONG T Y,MASON N J,et al.. Morphology and defect structures of GaSb islands on GaAs grown by metalorganic vapor phase epitaxy[J]. J. Electron. Mater., 1998,27(5):466-471.
QIU Y X,LI M C,WANG Y T,et al.. Investigation of GaSb epilayer grown on vicinal GaAs(001) substrate by high resolution X-ray diffraction[J]. Phys. Scr., 2007,129:27-30.
HSIAO C J,HA M T H,HSU C Y,et al.. Growth of ultrathin GaSb layer on GaAs using metal-organic chemical vapor deposition with Sb interfacial treatment[J]. Appl. Phys. Express, 2016,9(9):095502-1-4.
HSIAO C J,HA M T H,LIU C K,et al.. Performance improvement of highly mismatched GaSb layers on GaAs by interfacial-treatment-assisted chemical vapor deposition[J]. J. Mater. Sci. Mater. Electron., 2017,28(1):846-855.
EL KAZZI S,DESPLANQUE L,COINON C,et al.. Compliance at the GaSb/GaP Interface by misfit dislocations array[J]. Adv. Mater. Res., 2011,324:85-88.
BALAKRISHNAN G,TATEBAYASHI J,KHOSHAKHLAGH A,et al.. Ⅲ/Ⅴ ratio based selectivity between strained stranski-krastanov and strain-free GaSb quantum dots on GaAs[J]. Appl. Phys. Lett., 2006,89(16):161104-1-3.
JIANG C,KAWAZU T,KOBAYASHI S,et al.. Molecular beam epitaxial growth of very large lateral anisotropic GaSb/GaAs quantum dots[J]. J. Cryst. Growth, 2007,301-302:828-832.
TIMM R. Formation,Atomic Structure,and Electronic Properties of GaSb Quantum Dots in GaAs[D]. Berlin:Technische Universitt Berlin, 2007.
EL KAZZI S,DESPLANQUE L,WALLART X,et al.. Interplay between Sb flux and growth temperature during the formation of GaSb islands on GaP[J]. J. Appl. Phys., 2012,111(12):123506-1-5.
LI G D,JIANG C,ZHU Q S,et al.. Anisotropic transport of two-dimensional electron gas modulated by embedded elongated GaSb/GaAs quantum dots[J]. Appl. Phys. Lett., 2011,98(3):032103-1-3.
KAWAZU T,NODA T,MANO T,et al.. Effects of Sb/As interdiffusion on optical anisotropy of GaSb quantum dots in GaAs grown by droplet epitaxy[J]. Jpn. J. Appl. Phys., 2012,51(11R):115201.
BRACHT H,NICOLS S P,WALUKIEWICZ W,et al.. Large disparity between gallium and antimony self-diffusion in gallium antimonide[J]. Nature, 2000,408(6808):69-72.
陆大成,段树坤. 金属有机化合物气相外延基础及应用[M]. 北京:科学出版社, 2009. LU D C,DUAN S K. Organometallic Vapor-phase Epitaxy:Basis and Application[M]. Beijing:Science Press, 2009. (in Chinese)
STRINGFELLOW G B. Organometallic Vapor-phase Epitaxy[M]. 2nd ed. San Diego:Academic Press, 1999.