浏览全部资源
扫码关注微信
1. 中山大学 物理学院 广州,510275
2. 中国科学院 上海硅酸盐所 上海,201800
3. 广州瑞迪爱生科技有限公司 广州,510653
Received:22 February 2018,
Revised:15 April 2018,
Published:05 December 2018
移动端阅览
唐桦明, 唐强, 毛日华等. (Lu,Y)<sub>2</sub>SiO<sub>5</sub>∶Ce<sup>3+</sup>与SrSO<sub>4</sub>∶Dy<sup>3+</sup>材料低温热释光及其测试仪器的研究[J]. 发光学报, 2018,39(12): 1807-1813
TANG Hua-ming, TANG Qiang, MAO Ri-hua etc. Low-temperature Thermoluminescence of (Lu,Y)<sub>2</sub>SiO<sub>5</sub>: Ce<sup>3+</sup> and SrSO<sub>4</sub>: Dy<sup>3+</sup> and Their Measurement Instruments[J]. Chinese Journal of Luminescence, 2018,39(12): 1807-1813
唐桦明, 唐强, 毛日华等. (Lu,Y)<sub>2</sub>SiO<sub>5</sub>∶Ce<sup>3+</sup>与SrSO<sub>4</sub>∶Dy<sup>3+</sup>材料低温热释光及其测试仪器的研究[J]. 发光学报, 2018,39(12): 1807-1813 DOI: 10.3788/fgxb20183912.1807.
TANG Hua-ming, TANG Qiang, MAO Ri-hua etc. Low-temperature Thermoluminescence of (Lu,Y)<sub>2</sub>SiO<sub>5</sub>: Ce<sup>3+</sup> and SrSO<sub>4</sub>: Dy<sup>3+</sup> and Their Measurement Instruments[J]. Chinese Journal of Luminescence, 2018,39(12): 1807-1813 DOI: 10.3788/fgxb20183912.1807.
为了分析材料在低温下的陷阱能级,获得更多有关缺陷结构的信息,研制了一套由STM32微控制器为核心的低温热释光发光谱测量系统。设计了低温样品室,采用液氮冷却样品;STM32通过控制加热电流,实现样品以恒定速率升温,从而获得低温热释光发光曲线或三维热释光谱。温度测量范围为85~400 K,升温速率范围为0.1~10 K/s。设计了由STM32控制X射线及紫外光源的驱动电路,用于样品的激发。采用高灵敏度CCD实现对三维热释光谱的测量,采用单光子计数器获取二维热释光发光曲线。利用该系统测试了(Lu,Y)
2
SiO
5
:Ce
3+
(LYSO:Ce
3+
)单晶闪烁体与SrSO
4
:Dy
3+
粉末样品的热释光谱及辐射发光光谱。观察到LYSO:Ce
3+
在108,200,380 K左右的热释光峰,发光波长位于390~450 nm之间,是明显的宽带峰。在低温下由于基质的自陷激子(STE)发射所形成的发射峰在166 K时发生猝灭。在309 K时,Ce
3+
发射峰展宽为单一发射峰;SrSO
4
:Dy
3+
发光峰温度为178,385 K,发光波长由Dy
3+
离子的能级跃迁决定,在480,575,660,750 nm处呈现窄带发光峰。结果表明,系统人机交互界面友好,实验数据可靠,智能化程度高,操作简单。
To analyze the trap level at low temperature and obtain more information about the defect structure of materials
a low-temperature thermoluminescence(TL) spectrum measurement system based STM32 micro-controller was developed. Low-temperature sample chamber was designed and the samples were cooled by liquid nitrogen. The heating current was controlled by STM32 so that TL glow curves or three-dimensional(3D) TL spectra were obtained at a constant heating rate. The system has a high-precision temperature range of 85-400 K and the heating rate ranges from 0.1-10 K/s. The drive circuit of X-ray and ultraviolet light controlled by STM32 are designed for sample excitation. A CCD and a PMT are installed in the system to obtain two-dimensional(2D) TL glow curves and 3D TL spectrum respectively. In this paper
the system is used to test the TL and radioluminescence(RL) of (Lu
Y)
2
SiO
5
:Ce
3+
(LYSO:Ce
3+
) scintillator and SrSO
4
:Dy
3+
. The luminescence around 108
200
380 K is observed in LYSO:Ce
3+
. The emission band is between 390 and 450 nm
which is a clear broad-band spectra. The emission peak due to the self-trapped excitons(STE) from host at low-temperature quenches above 166 K. The emission peaks of Ce
3+
broaden into a single peak at 309 K
the emission peaks of SrSO
4
:Dy
3+
are at 178
385 K and the wavelength are 480
575
660
750 nm due to the energy transitions of Dy
3+
they are narrow-band spectra. The system can provide some merits
such as friendly interface
credible experimental data
higher intelligentization and simple operations.
PROKIC M. Individual monitoring based on magnesium borate[J]. Radiat. Protect. Dosimet., 2007,125(1-4):247-250
JIANG L H, ZHANG Y L, LI C Y, et al.. Thermoluminescence characteristics of rare-earth-doped LiCaBO3 phosphor[J]. J. Lumin., 2008, 128(12):1904-1908
GAI M Q, CHEN Z Y, FAN Y W, et al.. Synthesis and luminescence in LiMgPO4:Tb,Sm,B phosphors with possible applications in real-time dosimetry[J]. J. Rare Earths, 2013, 31(6):551-554
SOUZA L F, SILVA A M B, ANTONIO P L, et al.. Dosimetric properties of MgB4O7:Dy, Li and MgB4O7:Ce, Li for optically stimulated luminescence applications[J]. Radiat. Meas., 2017, 106:196-199
MCKEEVER S W W, BUBE R H. Thermoluminescence of Solids [M]. England:Cambridge University Press, 1985
LIU S P, MARES J A, BABIN V, et al.. Effect of reducing Lu3+content on the fabrication and scintillation properties of non-stoichiometric Lu3-xAl5O12:Ce ceramics[J]. Opt. Mater., 2017, 63:179-184
刘波, 施朝淑, 周东方, 等. 掺Gd3+,Y3+对PbWO4低温热释光的影响[J]. 物理学报, 2001, 50(8):1627-1630. LIU B, SHI C S, ZHOU D F, et al.. Influence of Gd3+ and Y3+doping on low temperature thermoluminescence of PbWO4[J]. Acta Phys. Sinica, 2001, 50(8):1627-1630. (in Chinese)
BOS A J, DORENBOS P, BESSIRE A, et al.. Study of TL glow curves of YPO4 double doped with lanthanide ions[J]. Radiat. Meas., 2011, 46(12):1410-1416
DORENBOS P. Determining binding energies of valence-band electrons in insulators and semiconductors via lanthanide spectroscopy[J]. Phys. Rev. B, 2013, 87(3):87-92
HU C, FENG X Q, LI J, et al.. Role of Y admixture in (Lu1-xYx)3Al5O12:Pr ceramic scintillators free of host luminescence[J]. Phys. Rev.:Appl., 2016, 6(6):064026
MAO R H, ZHANG L Y, ZHU R Y. Quality of a 28 cm long LYSO crystal and progress on optical and scintillation properties[J]. Trans. Nucl. Sci., 2012, 59(5):2224-2228
唐强, 张纯祥. 热释光和光释光发光谱的测量[J].发光学报, 2006, 27(3):308-312. TANG Q, ZHANG C X. Measurement of thermoluminescence spectra and optically stimulated luminescence spectra[J]. Chin. J. Lumin., 2006, 27(3):308-312. (in Chinese)
SZUPRYCZYNSKI P, MELCHER C L, KOSCHAN M A, et al.. Thermoluminescence and scintillation properties of rare earth oxyorthosilicate scintillators[J]. IEEE Trans. Nucl. Sci., 2004, 51(3):1103-1110
FENG H, VITEZSLAV J, MIHOKOVA E, et al.. Temperature dependence of luminescence characteristics of Lu2(1-x)-Y2xSiO5:Ce3+ scintillator grown by the Czochralski method[J]. J. Appl. Phys., 2010, 108:033519
DORENBOS P, VAN EIJK C W E, BOS A J J, et al.. After glow and thermoluminescence properties of Lu2SiO5:Ce scintillation crystals[J]. J. Phys.:Condens. Matter, 1994, 6(22):4167-4180
唐强. 掺稀土Eu、Tm、Dy和Mn、P的碱土硫酸盐磷光体的热释光和光释光[D]. 广州:中山大学, 2004. TANG Q. Thermoluminescence and Optical Stimulated Luminescence of Eu,Tm,Dy and Mn,P Doped Alkaline-earth Sulfate[D]. Guangzhou:Sun Yat-sen University, 2004. (in Chinese)
ZORENKO Y, ZORENKO T, VOZNYAK T, et al.. Intrinsic luminescence of Lu2SiO5 (LSO) and Y2SiO5 (YSO) orthosilicates[J]. J. Lumin., 2013, 137(9):204-207.
0
Views
75
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution