浏览全部资源
扫码关注微信
1. 吉林师范大学 功能材料物理与化学教育部重点实验室,吉林 长春,130103
2. 吉林师范大学 环境友好材料制备与应用教育部重点实验室,吉林 长春,130103
3. 吉林师范大学 物理学院,吉林 四平,136000
4. 吉林师范大学 化学学院,吉林 四平,136000
5. 吉林师范大学 环境科学与工程学院,吉林 四平,136000
Received:02 August 2018,
Revised:23 October 2018,
Published:05 December 2018
移动端阅览
王岩岩, 唐美瑶, 申赫等. 基于芘功能化核壳型磁性二氧化硅纳米微球的荧光传感器及其对水溶液中汞离子的检测和去除[J]. 发光学报, 2018,39(12): 1799-1806
WANG Yan-yan, TANG Mei-yao, SHEN He etc. Pyrene-functionalized Core-shell Magnetic Silica Nanospheres for Optical Sensing and Removal of Hg<sup>2+</sup> in Aqueous Solution[J]. Chinese Journal of Luminescence, 2018,39(12): 1799-1806
王岩岩, 唐美瑶, 申赫等. 基于芘功能化核壳型磁性二氧化硅纳米微球的荧光传感器及其对水溶液中汞离子的检测和去除[J]. 发光学报, 2018,39(12): 1799-1806 DOI: 10.3788/fgxb20183912.1799.
WANG Yan-yan, TANG Mei-yao, SHEN He etc. Pyrene-functionalized Core-shell Magnetic Silica Nanospheres for Optical Sensing and Removal of Hg<sup>2+</sup> in Aqueous Solution[J]. Chinese Journal of Luminescence, 2018,39(12): 1799-1806 DOI: 10.3788/fgxb20183912.1799.
通过溶剂热、溶胶-凝胶和共嫁接技术开发制备了一种基于芘功能化的核壳型磁性二氧化硅纳米微球的可回收汞离子光学传感器。相对于其他竞争金属离子,获得的多功能纳米微球对Hg
2+
具有良好的荧光传感性能和选择性。多功能微球的荧光强度与Hg
2+
浓度之间显示出良好的Stern-Volmer线性关系(
R
2
=0.998 3),其检测限为2.310
-8
molL
-1
。该材料对汞离子的荧光响应具有可逆性,利用EDTA溶液处理可实现多次重复使用。此外,芘功能化的磁性二氧化硅纳米微球可以有效地除去水溶液中的Hg
2+
,并且通过施加外部磁场可实现简单快速的分离。上述结果表明,这种功能化核壳型磁性二氧化硅微球在同时检测和去除环境污染物方面具有良好的发展前景与应用潜力。
A recyclable mercury(Ⅱ) optical sensor based on pyrene-functionalized core-shell magnetic silica nanosphereswas developed and demonstrated by sol-gel grafting reaction. The obtained multifunctional microspheres displayed excellent fluorescence sensitivity and selectivity towards Hg
2+
over other competing metal ions. A good linearity Stern-Volmer working plot (
R
2
=0.998 3) between the fluorescence intensity of multifunctional microspheres and the concentration of Hg
2+
was constructed with a satisfactory detection limit of 2.310
-8
molL
-1
. Their fluorescence response in the presence of Hg
2+
is found to be almost reversible when treated by EDTA solution. Moreover
these pyrene-functionalized magnetic silica nanospheres can efficiently remove Hg
2+
in aqueous solution and easily separated by appling an external magnetic field. These results indicate that functionalized core-shell magnetic silica microspheres are potentially promising materials for simultaneously detecting and removing environmental pollutants.
PACYNA J M, TRAVNIKOV O, DE SIMONE F, et al.. Current and future levels of mercury atmospheric pollution on a global scale[J]. Atmosph. Chem. Phys., 2016, 16(19):12495-12511.
SASMAZ M, AKGUL B, YILDIRIM D, et al.. Mercury uptake and phytotoxicity in terrestrial plants grown naturally in the Gumuskoy (Kutahya) mining area, Turkey[J]. Int. J. Phytoremed., 2016, 18(1):69-76.
HA E, BASU N, BOSE-O'REILLY S, et al.. Current progress on understanding the impact of mercury on human health[J]. Environment. Res., 2017, 152:419-433.
CANO-SANCHO G, PERELLO G, MAULVAULT A L, et al.. Oral bioaccessibility of arsenic, mercury and methylmercury in marine species commercialized in Catalonia (Spain) and health risks for the consumers[J]. Food Chem. Toxicol., 2015, 86:34-40.
BRANDAO F, CAPPELLO T, RAIMUNDO J, et al.. Unravelling the mechanisms of mercury hepatotoxicity in wild fish (Liza aurata) through a triad approach:bioaccumulation, metabolomic profiles and oxidative stress[J]. Metallomics, 2015, 7(9):1352-1363.
KIM K H, KABIR E, JAHAN S A. A review on the distribution of Hg in the environment and its human health impacts[J]. J. Hazard. Mater., 2016, 306:376-385.
LEE M H, KIM J S, SESSLER J L. Small molecule-based ratiometric fluorescence probes for cations, anions, and biomolecules[J]. Chem. Soc. Rev., 2015, 44(13):4185-4191.
SALEEM M, RAFIQ M, HANIF M. Organic material based fluorescent sensor for Hg2+:a brief review on recent development[J]. J. Fluoresc., 2017, 27(1):31-58.
GUIQIU C, ZHI G, GUANGMING Z, et al.. Fluorescent and colorimetric sensors for environmental mercury detection[J]. Analyst, 2015, 140(16):5400.
JIAO Y, ZHANG L, ZHOU P. A rhodamine B-based fluorescent sensor toward highly selective mercury (Ⅱ) ions detection[J]. Talanta, 2016, 150:14-19.
GHOSH S, ALGHUNAIM A S, AL-MASHHADANI M H, et al.. 4,5-diazafluorene co-oligomers as electron-deficient light-emitting materials and selective fluorescence sensors for mercury(Ⅱ) cations[J]. J.Mater. Chem. C, 2018, 6(14):3762-3773.
ZHONG K L, GUO B F, ZHOU X, et al.. Ionics fluorescent chemsensor based on pyrene[J]. Prog. Chem., 2015, 27(9):1230-1239.
TMAY S O, USLU A, ALIDAGI H A, et al.. A systematic series of fluorescence chemosensors with multiple binding sites for Hg(Ⅱ) based on pyrenyl-functionalized cyclotriphosphazenes and their application in live cell imaging[J]. New J. Chem., 2018, 42:14219.
RANI B K, JOHN S A. Fluorogenic mercury ion sensor based on pyrene-amino mercapto thiadiazole unit[J]. J. Hazard. Mater., 2017, 343:98.
LIU L N, TAO H, CHEN G, et al.. An amphiphilic pyrene-based probe for multiple channel sensing of mercury ions[J]. J. Lumin., 2018, 203(6):54-61.
SUN Z, CUI G, LI H, et al.. Multifunctional optical sensing probes based on several inorganic hybrid composites[J]. J. Mater. Chem. B, 2016, 4(31):5194-5216.
KUMAR V, KIM K H, KUMAR P, et al.. Functional hybrid nanostructure materials:advanced strategies for sensing applications toward volatile organic compounds[J]. Coordinat. Chem. Rev., 2017, 342:80-105.
SURESH M, ANAND C, FRITH J E, et al.. Fluorescent and magnetic mesoporous hybrid material:a chemical and biological nanosensor for Hg2+ ions[J]. Sci. Rep., 2016, 6(21820):1-9.
EL-NAHASS M N, FAYED T A. Chemosensing hybrid materials:chalcones-functionalized cage-like mesoporous SBA-16 material for highly selective detection of toxic metal ions[J]. Appl. Organomet. Chem., 2017, 31(11):e3751.
TANG Y, DING Y, WU T, et al.. A turn-on fluorescent probe for Hg2+ detection by using gold nanoparticle-based hybrid microgels[J]. Sens. Actuators B:Chem., 2016, 228:767-773.
XIONG Z C, ZHANG L Y, ZHANG R S, et al.. Solid-phase extraction based on magnetic core-shell silica nanoparticles coupled with gas chromatography-mass spectrometry for the determination of low concentration pesticides in aqueous samples[J]. J. Separat. Sci., 2012, 35(18):2430.
JIANG H, YAN L, LUO W, et al.. A resumable two-photon fluorescent probe for Cu2+ and S2- based on magnetic silica core-shell Fe3O4@SiO2 nanoparticles and its application in bioimaging[J]. Anal. Chim. Acta, 2018, 1014:91-99.
YOON T J, YUN K N, KIM E, et al.. Specific targeting, cell sorting, and bioimaging with smart magnetic silica core-shell nanomaterials[J]. Small, 2010, 2(2):209-215.
QIAO Z, PERESTRELO R, REYES-GALLARDO E M, et al.. Octadecyl functionalized core-shell magnetic silica nanoparticle as a powerful nanocomposite sorbent to extract urinary volatile organic metabolites[J]. J. Chromatog. A, 2015, 1393:18-25.
LEE H K, YANG D S, OH W, et al.. Copper ferrocyanide functionalized core-shell magnetic silica composites for the selective removal of cesium ions from radioactive liquid waste[J]. J. Nanosci. Nanotechnol., 2016, 16(6):6223-6230.
WANG Y Y, LI B, ZHANG L M, et al.. A highly selective regenerable optical sensor for detection of mercury(Ⅱ) ion in water using organic-inorganic hybrid nanomaterials containing pyrene[J]. New J. Chem., 2010, 34(9):1946-1953.
ANTONIO C, ROSARIO M, VEGA L, et al.. Highly selective chromogenic and redox or fluorescent sensors of Hg2+ in aqueous environment based on 1,4-disubstituted azines[J]. J. Am. Chem. Soc., 2005, 127(45):15666.
WANG Y Y, LI B, ZHANG L M, et al.. Multifunctional magnetic mesoporous silica nanocomposites with improved sensing performance and effective removal ability toward Hg(Ⅱ)[J]. Langmuir, 2012, 28(2):1657-1662.
BIAN Z, KAWI S. Sandwich-like silica@Ni@silica multicore-shell catalyst for low temperature dry reforming of methane:confinement effect against carbon formation[J]. Chemcatchem, 2018, 10(1):124-129.
LEI B, LI B, ZHANG H, et al.. Mesostructured silica chemically doped with ruii as a superior optical oxygen sensor[J]. Adv. Funct. Mater., 2006, 16(14):1883-1891.
LEI B, LI B, ZHANG H, et al.. Synthesis, characterization, and oxygen sensing properties of functionalized mesoporous SBA-15 and MCM-41 with a covalently linked ruthenium(Ⅱ) complex[J]. J. Phys. Chem. C, 2007, 111(30):505-514.
WANG Y Y, LI B, ZHANG L M, et al.. Multifunctional mesoporous nanocomposites with magnetic, optical, and sensing features:synthesis, characterization, and their oxygen-sensing performance[J]. Langmuir, 2013, 29(4):1273-1279.
SHIRDEL J, PENZKOFER A, PROCHZKA R, et al.. Absorption and emission spectroscopic characterisation of a pyrene-flavin dyad[J]. Chem. Phys., 2007, 331(2):427-437.
PITARCH-JARQUE J, CARBONELL E, DELGADO-PINAR E, et al.. Boehmite supported pyrene polyamine systems as probes for iodide recognition[J]. J. Phys. Chem. C, 2013, 117(117):14325.
BASHEER S M, WILLIS A C, SREEKANTH A. Spectroscopic and TD-DFT studies on the dual mode fluorescent chemosensors based on pyrene thiosemicarbazones, and its application as molecular-scale logic devices[J]. J. Lumin., 2017, 183:266-280.
0
Views
79
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution