浏览全部资源
扫码关注微信
1. 长春理工大学 生命科学技术学院,吉林 长春,130022
2. 河南科技学院新科学院 生物与化学工程系,河南 新乡,453003
Received:04 May 2018,
Revised:09 August 2018,
Published Online:23 August 2018,
Published:05 December 2018
移动端阅览
金丽虹, 王梦欣, 周雅静等. 光谱法及分子模拟研究青蒿素与小牛胸腺DNA的相互作用[J]. 发光学报, 2018,39(12): 1765-1771
JIN Li-hong, WANG Meng-xin, ZHOU Ya-jing etc. Binding Interaction of Artemisinin and DNA: Spectroscopic Methodologies and Molecular Docking[J]. Chinese Journal of Luminescence, 2018,39(12): 1765-1771
金丽虹, 王梦欣, 周雅静等. 光谱法及分子模拟研究青蒿素与小牛胸腺DNA的相互作用[J]. 发光学报, 2018,39(12): 1765-1771 DOI: 10.3788/fgxb20183912.1765.
JIN Li-hong, WANG Meng-xin, ZHOU Ya-jing etc. Binding Interaction of Artemisinin and DNA: Spectroscopic Methodologies and Molecular Docking[J]. Chinese Journal of Luminescence, 2018,39(12): 1765-1771 DOI: 10.3788/fgxb20183912.1765.
在pH 7.4的Tris-HCl缓冲溶液中,采用紫外吸收光谱、荧光光谱结合溴化乙锭(EB)荧光探针、共振散射光谱以及DNA熔点(
T
m
)实验和分子模拟等技术,研究了青蒿素(QHS)与小牛胸腺DNA(ctDNA)分子间结合位点与结合机制。光谱实验结果显示,QHS与DNA发生减色效应,QHS的加入使EB-DNA体系发生静态荧光猝灭,QHS与DNA作用后其467 nm处共振散射峰锐增,与QHS作用引起DNA的
T
m
值升高5℃,说明QHS竞争性地嵌插入DNA的碱基对中。通过计算获得QHS与DNA间结合常数
K
a
为1.4310
3
L/mol(298 K)、0.9910
3
L/mol(304 K)。分子模拟结果表明,QHS吡喃环部分结构嵌插到DNA小沟区域GA碱基对间,氢键和范德华力是两者间结合的主要非共价作用方式,该结论与光谱法和热力学所得结果一致。
In a Tris-HCl buffer solution at pH 7.4
ultraviolet spectroscopy
fluorescence spectrometry combined with ethidium bromide(EB) fluorescence probes
resonance scattering spectroscopy
and DNA melting point(
T
m
) experiments and molecular simulation techniques were used to investigate the binding site and binding mechanism between the artemisinin(QHS) and calf thymus DNA (ctDNA). Spectral results showed that QHS and DNA had a color-reducing effect
and the addition of QHS caused the static fluorescence quenching of EB-DNA system. When QHS interacted with DNA
its resonance scattering peak at 467 nm sharply increased
and the
T
m
value of DNA increased by 5℃. This showed that QHS was competitively inserted into the base pair of DNA. The calculated binding constants of QHS and DNA were 1.4310
3
L/mol(298 K) and 0.9910
3
L/mol(304 K). The molecular simulation results showed that the structure of the QHS pyran ring was intercalated between the GA base pairs in the DNA minor groove region. Hydrogen bonds and van der Waals forces were the main noncovalent interactions between them. This conclusion was consistent with the results obtained by spectroscopy and thermodynamics.
MILLER L H, SU X. Artemisinin:discovery from the Chinese herbal garden[J]. Cell, 2011, 146(3):855-858.
青蒿素结构研究协作组. 一种新型的倍半萜内酯青蒿素[J]. 科学通报, 1977, 22(3):142. ARTEMISININ STRUCTURE RESEARCH COLLAVORATIVE GROUP. A novel sesquiterpene lactone-artemisinin[J]. Chin. Sci. Bull., 1997, 22(3):142. (in Chinese)
LI H J, WANG W, LI Y Z, et al.. Effects of artemether, artesunate and dihydroartemisinin administered orally at multiple doses or combination in treatment of mice infected with Schistosom japonicum[J]. Parasitology Res., 2011, 109(2):515-519.
谭余庆, 赵一, 林启云, 等. 青蒿素提取物抗内毒素实验研究[J]. 中国中药杂志, 1999, 24(3):166-171. TAN Y Q, ZHAO Y, LIN Q Y, et al.. Experimental study on antiemdotoxin effect of extracts form artemisia annual[J].China J. Chin. Materia Medica, 1999, 24(3):166-171. (in Chinese)
LI T, CHEN H, WEI N, et al.. Anti-inflammatory and immunomodulatory mechanisms of artemisinin on contact hypersensitivity[J]. Int. Immunopharmacol., 2012, 12(1):144-150.
LI W D, DONG Y J, TU YY, et al.. Dihydroarteannuin ameliorates lupus symptom of BXSB mice by inhibiting production of TNF-alpha and blocking the signaling pathway NF-kappa B translocation[J]. Int. Immunopharmacol., 2006, 6(8):1243-1250.
LEE S H, CHO Y C KIM K H, et al.. Artesunate inhibits proliferation of nave CD4 T cells but enhances fumction of effector T cells[J]. Arch. Pharmacal Res., 2015, 38(6):1195-1203.
王京, 郑诚月, 刘来, 等. 青蒿素衍生物的合成及抗肿瘤活性研究进展[J]. 国外医药抗生素分册, 2018, 39(1):68-73. WANG J, ZHENG C Y, LIU L, et al.. Progress in synthesis and anticancer activities of artemisinin derivatives[J].World Notes Antibiot., 2018, 39(1):68-73. (in Chinese)
LAI H, SASAKI T, SINGH N P, et al.. Effects of artem isinin-lagged holo transferring on cancer cells[J]. Life Sci., 2005, 76:1267-1279.
TU Y Y. Artemisinin-a gift from traditional Chinese Medicine to the world(Nobel Lecture)[J]. Angew. Chem. Int. Ed., 2016, 55(35):10210-10226.
HURLEY L H. DNA and its associated processes as targets for cancer therapy[J]. Nat. Rev. Cancer, 2002, 2(3):188-200.
申炳俊, 刘占伟, 刘荣娟, 等. 柯里拉京与DNA相互作用的光谱研究[J]. 发光学报, 2017, 38(12):1681-1687. SHEN B J, LIU Z W, LIU R J, et al.. Study on mechanism of interactions between DNA and corilagin by spectroscopy[J]. Chin. J. Lumin., 2017, 38(12):1681-1687. (in Chinese)
JIN N, ZOU X H, LIU J G. Shape-andenanitioselective interaction of Ru(Ⅱ)/Co(Ⅲ) polypyridyl complexes with DNA[J]. Cheminform, 2001, 32(36):513-536.
蔡怀鸿, 杨培慧, 蔡继业. 青蒿素与DNA作用的电化学机理[J]. 应用化学, 2007, 24(4):411-415. CAI H H, YANG P H, CAI J Y. Electrochem ical study on interaction between artem isinin and DNA[J]. Chin. J. Appl. Chem., 2007, 24(4):411-415. (in Chinese)
刘叶, 赵微微, 李宗孝, 等. 紫外光谱与ITC法研究乌头碱与粘虫DNA相互作用[J]. 光谱学与光谱分析, 2018, 38(3):851-856. LIU Y, ZHAO W W, LI Z X, et al.. Study on the interaction of aconitine and armyworm DNA by UV spectroscopy and ITC method[J]. Spectrosc. Spect. Anal., 2018, 38(3):851-856. (in Chinese)
SHI J H, CHEN J, WANG J, et al.. Binding interaction between sorefenib and calf thymus DNA:spectroscopic methodology, viscosity measurement and molecular docking[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2015, 136:433-450.
余燕影, 李华, 胡昕, 等. 染料木素铬(Ⅲ)配合物与DNA相互作用的研究[J]. 光谱学与光谱分析, 2008, 28(7):1587-1591. YU Y Y, LI H, HU X, et al.. Research on the interaction of Cr(Ⅲ) complex of genistein with DNA[J]. Spectrosc. Spect. Anal., 2008, 28(7):1587-1591. (in Chinese)
YANG H, WANG X M. Spectroscopic studies on the interaction of -cyclodextrin-8-hydroxyquiuolineinclusioncomplex with herring sprm DNA[J]. J. Mol. Struct., 2013, 1036(27):51-55.
LAI L, LIN C, XU Z Q, et al.. Spectroscopic studies on the interactions between CdTe quantum dots coated with different ligands and human serum albumin[J]. Spectrochim. Acta Part A:Mol. Biomol. Spectrosc., 2012, 97(6):366-376.
刘保生, 张丽惠, 李志云, 等. 荧光光谱法研究拜复乐与小牛胸腺DNA的作用机理[J]. 发光学报, 2014, 35(3):372-376. LIU B S, ZHANG L H, LI Z Y, et al.. Studies on the interaction mechanism between moxifloxacin and ctDNA by fluorescence spectroscopy[J]. Chin. J. Lumin., 2014, 35(3):372-376. (in Chinese)
徐建建, 张国文. 咖啡酸与小牛胸腺DNA的相互作用[J]. 南昌大学学报(理科版), 2017, 41(4):324-329. XU J J, ZHANG G W. Study on the interaction between caffeic acid and calf thymus DNA[J]. J. Nanchang Univ. (Nat. Sci.), 2017, 41(4):324-329. (in Chinese)
ROSS D P, SUBRAMANIAN S. Thermodynamics of protein association reactions:contributing to stability[J]. Biochemistry, 1981, 20(11):3096-3099.
王志群, 张志强, 余江河, 等. 溴化乙锭对B-DNA碱基对特异性识别的分子模拟研究[J]. 化学学报, 2008, 66(24):2693-2699. WANG Z Q, ZHANG Z Q, YU J H, et al.. Specificity recognition of bese pairs of B-DNA by ethidium bromide via molecular simulation[J]. Acta Chim. Sinica, 2008, 66(24):2693-2699. (in Chinese)
0
Views
96
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution