XIANG Chun-ping, YUAN Zhan-sheng, LIU Jing etc. Surface Plasmon Polaritons and F-P Resonance Coupled Modes Balance The Generation Rate of Charge Carriers of Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018,39(12): 1749-1756
XIANG Chun-ping, YUAN Zhan-sheng, LIU Jing etc. Surface Plasmon Polaritons and F-P Resonance Coupled Modes Balance The Generation Rate of Charge Carriers of Perovskite Solar Cells[J]. Chinese Journal of Luminescence, 2018,39(12): 1749-1756 DOI: 10.3788/fgxb20183912.1749.
Surface Plasmon Polaritons and F-P Resonance Coupled Modes Balance The Generation Rate of Charge Carriers of Perovskite Solar Cells
Thin-film photovoltaics play an important role in the quest for clean renewable energy. Recently
methylammonium lead halide perovskites were identified as promising absorbers for solar cells. To improve the absorption of perovskite solar cells(PSCs) and modify the distribution of the generation rate of charge carriers
the one dimensional periodic sinusoidal nano-grating structure is introduced into PSCs. We characterize the coupled modes between surface plasmon polaritons(SPPs) and Fabry-Prot(F-P) resonance
and analyze how they are affected by the period and height of the grating and the thickness of the active layer. The coupled modes enhance the light field in the weak absorbance spectrum region. Meanwhile
the width of coupled spectrum shows strong grating height dependence and will get a broad spectrum enhancement when the grating height is larger than 50 nm. The enhanced localized electric field near the interface of Ag/ETL expands into the active layer with an exponential decay length of~100 nm
results an absorption enhancement near the ETL/active layer interface. We calculate the absorption of the active layer by using a finite-difference time-domain(FDTD) method and the absorbance (the optimized grating structure with the grating period
the grating height and the thickness of active layer is 250 nm
50 nm and 300 nm
respectively) is improved by 12% in wavelength range of 650-800 nm in transverse magnetic (TM) light incidence condition. We also demonstrate an increased generation rate of charge carriers near the ETL/active layer interface due to the enhanced field. The normalized generation rate increases by 41%(110%) in the position of 250 nm(200 nm) away from the HTL/active layer interface in PSCs. A balanced generation rate in the whole active layer will improve the diffusion of electrons and the collection of carriers
result in the increasement of the power conversion efficiency.
关键词
Keywords
references
SHEIKH M S, SAKHYA A P, SADHUKHAN P, et al.. Dielectric relaxation and Ac conductivity of perovskites CH3NH3PbX3(X=Br,I)[J]. Ferroelectrics, 2017, 514(1):146-157.
HE Z C, ZHONG C M, SU S J, et al.. Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure[J]. Nat. Photon., 2012, 6:593-597.
MALINKIEWICZ O, YELLA A, LEE Y H, et al.. Perovskite solar cells employing organic charge-transport layers[J]. Nat. Photon., 2013, 8:128-132.
CUI J, CHEN C, HAN J, et al.. Surface plasmon resonance effect in inverted perovskite solar cells[J]. Adv. Sci., 2016, 3(3):1500312.
ZHOU H, CHEN Q, LI G, et al.. Interface engineering of highly efficient perovskite solar cells[J]. Science, 2014, 345(6196):542-546.
SHERKAR T S, MOMBLONA C, ESCRIG L G, et al.. Improving perovskite solar cells:insights from a validated device model[J]. Adv. Energy Mater., 2017, 7(13):1602432.
LIN Q Q, ARMIN A, NAGIRI R C R, et al.. Electro-optics of perovskite solar cells[J]. Nat. Photon., 2014, 9:106-112.
ZHAO D W, SEXTON M, PARK H Y, et al.. High-efficiency solution-processed planar perovskite solar cells with a polymer hole transport layer[J]. Adv. Energy Mater., 2015, 5(6):1401855.
GRTZEL M. The light and shade of perovskite solar cells[J]. Nat. Mater., 2014, 13:838-842.
XING G, MATHEWS N, LIM S S, et al.. Low-temperature solution-processed wavelength-tunable perovskites for lasing[J]. Nat. Mater., 2014, 13:476-480.
JUNG H S, PARK N G. Perovskite solar cells:from materials to devices[J]. Small, 2014, 11(1):10-25.
袁怀亮, 李俊鹏, 王鸣魁. 有机无机杂化固态太阳能电池的研究进展[J]. 物理学报, 2015, 64(3):38405. YUAN H L, LI J P, WANG M K. Recent progress in research on solid organic-inorganic hybrid solar cells[J]. Acta Phys. Sinica, 2015, 64(3):38405. (in Chinese)
KOJIMA A, TESHIMA K, SHIRAI Y, et al.. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells[J]. J. Am. Chem. Soc., 2009, 131(17):6050-6051.
MOMBLONA C, MALINKIEWICZ O, CARMONA C, et al.. Efficient methylammonium lead iodide perovskite solar cells with active layers from 300 to 900 nm[J]. APL Mater., 2014, 2(8):3623-3630.
FANG Z Y, ZHU X. Plasmonics in nanostructures[J]. Adv. Mater., 2013, 25(28):3840-3856.
LONG M, ZEFENG C, ZHANG T, et al.. Ultrathin efficient perovskite solar cell employing periodic structure of composite hole conductor for elevated plasmonic light harvesting and hole collection[J]. Nanoscale, 2015, 8(12):6290-6299.
JIN Y, ZOU D H, WANG K, et al.. Optimization of period and thickness of the corrugated Ag cathode for efficient cross coupling between SPP and microcavity modes in top-emitting OLEDs[J]. Opt. Mater. Express, 2017, 7(6):2096-2101.
JIN Y, FENG J, ZHANG X, et al.. Organic light-emitting diodes:solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode[J]. Adv. Mater., 2012, 24(9):1187-1191.
HOPPE H S. SARICIFTCI N, MEISSNER D. Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells[J]. Mol. Cryst. Liq. Cryst., 2002, 385(1):113-119.
HOLZER W, PENZKOFER A, HRHOLD H H, et al.. Photo-physical and lasing characterization of an aromatic diamine-xylylene copolymer[J]. Opt. Mater., 2000, 15(3):225-235.
JIANG Y J, GREEN M A, SHENG R, et al.. Room temperature optical properties of organic-inorganic lead halide perovskites[J]. Solar Energy Mater. Solar Cells, 2015, 137:253-257.
ARMIN A, VELUSAMY M, WOLFER P, et al.. Quantum efficiency of organic solar cells:electro-optical cavity considerations[J]. ACS Photon., 2014, 1(3):173-181.
CHRIST A, TIKHODEEV S G, GIPPIUS N A, et al.. Waveguide-plasmon polaritons:strong coupling of photonic and electronic resonances in a metallic photonic crystal slab[J]. Phys. Rev. Lett., 2003, 91(18):183901.
金玉, 王康, 邹道华, 等. 表面等离子体-微腔激元对顶入射有机薄膜太阳能电池光吸收效率的增强[J]. 发光学报, 2017, 38(11):1532-1538. JIN Y, WANG K, ZOU D H, et al.. Plasmon-cavity polaritons enhance the absorption efficiency of top-incident organic thin-film solar cells[J]. Chin. J. Lumin., 2017, 38(11):1532-1538. (in Chinese)
SCHAU P, FRENNER K, FU L, et al.. Design of high-transmission metallic meander stacks with different grating periodicities for subwavelength-imaging applications[J]. Opt. Express, 2011, 19(4):3627-3636.
FU L, WEISS T, SCHWEIZER H, et al.. Mode coupling and interaction in a plasmonic microcavity with resonant mirrors[J]. Phys. Rev. B, 2011, 84(10):1103.
FENG S, LIU H, KLAR P. Waveguide Fabry-Prot microcavity arrays[J]. Appl. Phys. Lett., 2011, 99(10):53119.
TOMA M, TOMA K, ADAM P, et al.. Surface plasmon-coupled emission on plasmonic Bragg gratings[J]. Opt. Express, 2012, 20(13):14042-14053.
FENG S, ZHANG X, SONG J, et al.. Theoretical analysis on the tuning dynamics of the waveguide-grating structures[J]. Opt. Express, 2009, 17(2):426-436.
SHARON A, ROSENBLATT D, FRIESEM A A. Resonant grating-waveguide structures for visible and near-infrared radiation[J]. J. Opt. Soc. Am. A, 1997, 14(11):2985-2993.
HAYASHI S, NESTERENKO D, RAHMOUNI A, et al.. Observation of Fano line shapes arising from coupling between surface plasmon polariton and waveguide modes[J]. Appl. Phys. Lett., 2016, 108(5):51101.
Bimolecularly Passivated Buried Interface for Highly Efficient Perovskite Solar Cells
Solvent Regulation Strategy for Ambient Preparation of Perovskite Solar Cells
Multifunctional Orotic Acid Passivation for Efficient and Stable Perovskite Solar Cells
Efficient and Stable Perovskite Solar Cells Achieved by Subsurface Interface Modification
Progress on Single-crystal Perovskite Solar Cells
Related Author
WEN Chao
CHEN Qianyu
LU Yingjie
LIU Jiapeng
YAO Guangping
WANG Lidan
SU Zisheng
CHENG Junjie
Related Institution
College of Photonic and Electronic Engineering, Fujian Normal University
College of Chemical Engineering and Material, Quanzhou Normal University
College of Physics and Information Engineering, Quanzhou Normal University
Institute for Photonics Technology, Fujian Key Laboratory for Advanced Micro-Nano Photonics Technology and Devices, Fujian Provincial Collaborative Innovation Center for Ultra-Precision Optical Engineering and Applications, Quanzhou Normal University
School of Advanced Manufacturing, Fuzhou University