FANG Xiang-ming, LI Xiang, GAO Shi-yong etc. Fabrication and Properties of Self-powered Ultraviolet Detector Based on TiO<sub>2</sub> Nanotubes[J]. Chinese Journal of Luminescence, 2018,39(12): 1743-1748
FANG Xiang-ming, LI Xiang, GAO Shi-yong etc. Fabrication and Properties of Self-powered Ultraviolet Detector Based on TiO<sub>2</sub> Nanotubes[J]. Chinese Journal of Luminescence, 2018,39(12): 1743-1748 DOI: 10.3788/fgxb20183912.1743.
Fabrication and Properties of Self-powered Ultraviolet Detector Based on TiO2 Nanotubes
with the assistance of ZnO nanorods arrays template
and the morphologies and structures of the samples were characterized by using SEM and XRD. Furthermore
the photoelectrochemical photodetector was fabricated with ITO as counter electrode and the photocurrent and spectral responses were measured. In addition to the high sensitivity and self-powered characteristic
the photodetector also revealed a splendid wavelength selectivity in the spectral range between 300 and 400 nm at zero bias voltage. Meanwhile
it is interesting to note that self-powered TiO
2
nanotubes UV-photodetector has the excellent stability and repeatability
and the rise time and decay time are 0.33 s and 0.38 s
respectively.
关键词
Keywords
references
OUYANG W X, TENG F, FANG X S. High performance BiOCl nanosheets/TiO2 nanotube arrays heterojunction UV photodetector:the influences of self-induced inner electric fields in the BiOCl nanosheets[J]. Adv. Funct. Mater., 2018, 28(16):1707178.
尤坤, 宋航, 黎大兵, 等. GaN基MIS紫外探测器的电学及光电特性[J]. 发光学报, 2012, 33(1):55-60. YOU K, SONG H, LI D B, et al.. Electrical and optoelectronics characteristics of GaN based MIS photo-detectors[J]. Chin. J. Lumin., 2012, 33(1):55-60. (in Chinese)
XIE Y R, WEI L, LI Q H, et al.. High-performance self-powered UV photodetectors based on TiO2 nano-branched arrays[J]. Nanotechnology, 2014, 25(7):075202.
ZOU J P, ZHANG Q, HUANG K, et al.. Ultraviolet photodetectors based on anodic TiO2 nanotube arrays[J]. J. Phys. Chem., 2010, 114(24):10725-10729.
HOU X J, LIU B, WANG X F, et al.. SnO2-microtube-assembled cloth for fully flexible self-powered photodetector nanosystems[J]. Nanoscale, 2013, 5(17):7831-7837.
赵春雨, 张吉英, 王晓华, 等. MSM结构ZnO紫外探测器的制备与性质[J]. 发光学报, 2008, 29(6):1027-1030. ZHAO C Y, ZHANG J Y, WANG X H, et al.. Fabrication and properties of ZnO MSM UV detectors[J]. Chin. J. Lumin., 2008, 29(6):1027-1030. (in Chinese)
SHEN H, SHAN C X, LI B H, et al.. Reliable self-powered highly spectrum-selective ZnO ultraviolet photodetectors[J]. Appl. Phys. Lett., 2013, 103(23):232112.
HUANG Y W, YU Q J, WANG J Z, et al.. Plasmon-enhanced self-powered UV photodetectors assembled by Incorporating Ag@SiO2 core-shell nanoparticles into TiO2 nanocube photoanodes[J]. ACS Sustainable Chem. Eng., 2018, 6(1):438-446.
陈华. 锐钛矿相TiO2光学性质的计算[J]. 发光学报, 2009, 30(5):697-701. CHEN H. Calculations of optical properties in anatase TiO2[J]. Chin. J. Lumin., 2009, 30(5):697-701. (in Chinese)
ZHANG X, THAVASI V, MHAISALKAR S G, et al.. Novel hollow mesoporous 1D TiO2 nanofibers as photovoltaic and photocatalytic materials[J]. Nanoscale, 2012, 4(5):1707-1716.
MOR G K, VARGHESE O K, PAULOSE M, et al.. A review on highly ordered, vertically oriented TiO2 nanotube arrays:fabrication, material properties, and solar energy applications[J]. Solar Energy Mater. Solar Cells, 2006, 90(14):2011-2075.
VIGIL E, PETER L M, FORCADE F, et al.. An ultraviolet selective photodetector based on a nanocrystalline TiO2 photoelectrochemical cell[J]. Sens. Actuators A-Phys., 2011, 171(2):87-92.
SONG Z H, ZHOU H, TAO P, et al.. The synthesis of TiO2 nanoflowers and their application in electron field emission and self-powered ultraviolet photodetector[J]. Mater. Lett., 2016, 180:179-183.
YANG M J, ZHU J L, LIU W, et al.. Novel photodetectors based on double-walled carbon nanotube film/TiO2 nanotube array heterodimensional contacts[J]. Nano Res., 2011, 4(9):901-907.
李华基, 孟翠, 薛寒松, 等. 氧化铝模板法制备Ce掺杂二氧化钛纳米管[J]. 铝加工, 2009(2):8-11. LI H J, MENG C, XUE H S, et al.. Fabrication of cerium-doped titanium dioxide nanotubes by using anodized aluminum oxide template[J]. Aluminium Fab., 2009(2):8-11. (in Chinese)
MAIVALAGAN T, VISWANATHAN B, VARADARAJU U V. Fabrication and characterization of uniform TiO2 nanotube arrays by Sol-gel template method[J]. Bull. Mater. Sci., 2006, 29(7):705-708.
XU J Z, YANG W, CHEN H Y, et al.. Efficiency enhancement of TiO2 self-powered UV photodetectors using a transparent Ag nanowire electrode[J]. J. Mater. Chem. C, 2018, 6:3334-3340.
YOO J H, LANGE A, BUDE J, et al.. Optical and electrical properties of indium tin oxide films near their laser damage threshold[J]. Opt. Mater. Express, 2017, 7(3):817-826.
HOU J L, CHANG S J, CHANG S P. A ZnO nanowire photodetector with an Ir electrode integrated on a triple junction solar cell[J]. Int. J. Electrochem. Sci., 2013, 8(4):5650-5656.
祁晓萌, 彭文博, 赵小龙, 等. 基于高阻ZnO薄膜的光电导型紫外探测器[J]. 物理学报, 2015, 64(19):198501. QI X M, PENG W B, ZHAO X L, et al.. Photoconductive UV detector based on high-resistance ZnO thin film[J]. Acta Phys. Sinica, 2015, 64(19):198501. (in Chinese)
LEE W J, HON M H. An ultraviolet photo-detector based on TiO2/water solid-liquid heterojunction[J]. Appl. Phys. Lett., 2011, 99(25):251102.
LI X D, GAO C T, DUAN H G, et al.. Nanocrystalline TiO2 film based photoelectrochemical cell as self-powered UV-photodetector[J]. Nano Energy, 2012, 1(4):640-645.