浏览全部资源
扫码关注微信
广西大学 物理科学与工程技术学院, 广西相对论天体物理区重点实验室,广西 南宁,530004
Received:15 March 2018,
Revised:04 July 2018,
Published Online:26 July 2018,
Published:05 December 2018
移动端阅览
周之琰, 杨坤, 黄耀民等. 硅衬底生长的InGaN/GaN多层量子阱中δ型硅掺杂n-GaN层对载流子复合过程的调节作用[J]. 发光学报, 2018,39(12): 1722-1729
ZHOU Zhi-yan, YANG Kun, HUANG Yao-min etc. Recombination Process in InGaN/GaN MQW LED on Silicon with δ-Si Doped n-GaN Layer[J]. Chinese Journal of Luminescence, 2018,39(12): 1722-1729
周之琰, 杨坤, 黄耀民等. 硅衬底生长的InGaN/GaN多层量子阱中δ型硅掺杂n-GaN层对载流子复合过程的调节作用[J]. 发光学报, 2018,39(12): 1722-1729 DOI: 10.3788/fgxb20183912.1722.
ZHOU Zhi-yan, YANG Kun, HUANG Yao-min etc. Recombination Process in InGaN/GaN MQW LED on Silicon with δ-Si Doped n-GaN Layer[J]. Chinese Journal of Luminescence, 2018,39(12): 1722-1729 DOI: 10.3788/fgxb20183912.1722.
为了解决在单晶硅衬底上生长的InGaN/GaN多层量子阱发光二极管器件发光效率显著降低的问题,使用周期性型Si掺杂的GaN取代Si均匀掺杂的GaN作为n型层释放多层界面间的张应力。采用稳态荧光谱及时间分辨荧光谱测量,提取并分析了使用该方案前后的多层量子阱中辐射/非辐射复合速率随温度(10~300 K)的变化规律。实验结果表明引入-Si掺杂的n-GaN层后,非辐射复合平均激活能由(183)meV升高到(3810)meV,对应非辐射复合速率随温度升高而上升的趋势变缓,室温下非辐射复合速率下降,体系中与阱宽涨落有关的浅能级复合中心浓度减小,PL峰位由531 nm左右红移至579 nm左右,样品PL效率随温度的衰减受到抑制。使用周期性型Si掺杂的GaN取代Si均匀掺杂的GaN作为生长在Si衬底上的InGaN/GaN多层量子阱LED器件n型层,由于应力释放,降低了多层量子阱与n-GaN界面、InGaN/GaN界面的缺陷密度,使得器件性能得到了改善。
The emission efficiency of InGaN/GaN multiple quantum well(MQW) light emitting diode(LED) reduces if it is grown on single crystalline silicon substrates because of the enhanced strain between interfaces. A possible strategy to solve this problem is introducing periodic Si -doped GaN instead of Si uniformly doped GaN as the n-GaN layer. In this work
steady-state(SS) photoluminescence spectra(PL) and time-resolved(TR) PL spectra for LED sample with either Si uniformly doped GaN or periodic Si -doped GaN working as n-type GaN layer were tested for comparison. Relative emission efficiencies and recombination rates for each sample were extracted
then systematically analyzed. The results turned out that:the main PL peak redshifted from 531 nm to 579 nm after introducing periodic Si -doped n-GaN layer; the average activation energy related to nonradiative recombination increased from (183) meV to (3810) meV
as well as the decreasing of nonradiative recombination rate became slower with increasing temperature
and the nonradiative recombination rate at room temperature became smaller; at the same time
the average radiative recombination rate decreased with increasing temperature in major temperature range
which indicated that exciton localization dominated the radiative recombination processes. The average depth of localized state for excitons increased and the average radiative recombination rate at low temperature decreased. To sum up
because of the releasing of strain in MQW
the defect density that related to nonradiative recombination can be reduced
and the device performance can be improved if using periodic Si -doped n-GaN layer to replace Si uniformly doped GaN working as n-type GaN layer in InGaN/GaN MQW LED on silicon substrate.
SHON J W, OHTA J, UENO K, et al.. Fabrication of full-color ingan-based light-emitting diodes on amorphous substrates by pulsed sputtering[J]. Sci. Rep., 2014, 4:5325.
NAKAMURA S, SENOH M, NAGAHAMA S I, et al.. Room-temperature continuous-wave operation of InGaN multi-quantum-well structure laser diodes[J]. Appl. Phys. Lett., 1996, 69(26):4056-4058.
MILLER D A B. Rationale and challenges for optical interconnects to electronic chips[J]. Proc. IEEE, 2000, 88(6):728-749.
HOCHBERG M, BAEHR-JONES T. Towards fabless silicon photonics[J]. Nat. Photon., 2010, 4:492.
MASINI G, COLACE L, ASSANTO G. Si based optoelectronics for communications[J]. Mater. Sci. Eng.:B, 2002, 89(1):2-9.
ZHANG B, LIU Y. A review of GaN-based optoelectronic devices on silicon substrate[J]. Chin. Sci. Bull., 2014, 59(12):1251-1275.
TAWFIK W Z, HYUN G Y, RYU S W, et al.. Piezoelectric field in highly stressed GaN-based led on Si (111) substrate[J]. Opt. Mater., 2016, 55:17-21.
LEE K J, CHUN J, KIM S J, et al.. Enhanced optical output power of InGaN/GaN light-emitting diodes grown on a silicon (111) substrate with a nanoporous GaN layer[J]. Opt. Express, 2016, 24(5):4391-4398.
KIM M H, DO Y G, KANG H C, et al.. Effects of step-graded AlxGa1-xN interlayer on properties of GaN grown on Si(111) using ultrahigh vacuum chemical vapor deposition[J]. Appl. Phys. Lett., 2001, 79(17):2713-2715.
RAGHAVAN S, WENG X, DICKEY E, et al.. Effect of AlN interlayers on growth stress in GaN layers deposited on (111) Si[J]. Appl. Phys. Lett., 2005, 87(14):142101.
XIANG P, YANG Y, LIU M, et al.. Influences of periodic Si delta-doping on the characteristics of n-GaN grown on Si (111) substrate[J]. J. Cryst. Growth, 2014, 387(2):106-110.
SCHENK H P D, ALEXIS B, ERIC F, et al.. Delta-doping of epitaxial GaN layers on large diameter Si(111) substrates[J]. Appl. Phys. Express, 2012, 5(2):025504.
XIANG P, LIU M, YANG Y, et al.. Improving the quality of GaN on Si(111) substrate with a medium-temperature/high-temperature bilayer AlN buffer[J]. Jpn. J. Appl. Phys., 2013, 52(8S):08JB18.
HUMS C, FINGER T, HEMPEL T, et al.. Fabry-perot effects in InGaNGaN heterostructures on si-substrate[J]. J. Appl. Phys., 2007, 101(3):033113.
JEONG H, JEONG H J, OH H M, et al.. Carrier localization in In-rich InGaN/GaN multiple quantum wells for green light-emitting diodes[J]. Sci. Rep., 2015, 5:9373.
COLLINS R W, PAUL W. Model for the temperature dependence of photoluminescence in a-Si:H and related materials[J]. Phys. Rev. B, 1982, 25(8):5257-5262.
CHICHIBU S F, ONUMA T, SOTA T, et al.. Influence of InN mole fraction on the recombination processes of localized excitons in strained cubic InxGa1-xN/GaN multiple quantum wells[J]. J. Appl. Phys., 2003, 93(4):2051-2054.
XING Y, WANG L, YANG D, et al.. A novel model on time-resolved photoluminescence measurements of polar InGaN/GaN multi-quantum-well structures[J]. Sci. Rep., 2017, 7:45082.
JOHNSTON D C. Stretched exponential relaxation arising from a continuous sum of exponential decays[J]. Phys. Rev. B, 2006, 74(18):184430.
MOREL A, LEFEBVRE P, KALLIAKOS S, et al.. Donor-acceptor-like behavior of electron-hole pair recombinations in low-dimensional (Ga,In) N/GaN systems[J]. Phys. Rev. B, 2003, 68(4):045331.
IWATA Y, BANAL R G, ICHIKAWA S, et al.. Emission mechanisms in Al-rich AlGaN/AlN quantum wells assessed by excitation power dependent photoluminescence spectroscopy[J]. J. Appl. Phys., 2015, 117(7):075701.
LIN T, QIU Z R, YANG J R, et al.. Investigation of photoluminescence dynamics in InGaN/GaN multiple quantum wells[J]. Mater. Lett., 2016, 173:170-173.
LIN T, KUO H C, JIANG X D, et al.. Recombination pathways in green InGaN/GaN multiple quantum wells[J]. Nanoscale Res. Lett., 2017, 12(1):137.
LI Z, KANG J, WEI WANG B, et al.. Two distinct carrier localization in green light-emitting diodes with InGaN/GaN multiple quantum wells[J]. J. Appl. Phys., 2014, 115(8):083112.
LIU L, WANG L, LIU N, et al.. Investigation of the light emission properties and carrier dynamics in dual-wavelength InGaN/GaN multiple-quantum well light emitting diodes[J]. J. Appl. Phys., 2012, 112(8):083101.
0
Views
39
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution