浏览全部资源
扫码关注微信
北京工业大学 激光工程研究院 北京,100124
Received:28 February 2018,
Revised:29 May 2018,
Published Online:13 June 2018,
Published:05 December 2018
移动端阅览
李颖, 周广正, 兰天等. 垂直腔面发射激光器湿法氧化工艺的实验研究[J]. 发光学报, 2018,39(12): 1714-1721
LI Ying, ZHOU Guang-zheng, LAN Tian etc. Study on Wet Oxidation Process in Vertical Cavity Surface Emitting Laser[J]. Chinese Journal of Luminescence, 2018,39(12): 1714-1721
李颖, 周广正, 兰天等. 垂直腔面发射激光器湿法氧化工艺的实验研究[J]. 发光学报, 2018,39(12): 1714-1721 DOI: 10.3788/fgxb20183912.1714.
LI Ying, ZHOU Guang-zheng, LAN Tian etc. Study on Wet Oxidation Process in Vertical Cavity Surface Emitting Laser[J]. Chinese Journal of Luminescence, 2018,39(12): 1714-1721 DOI: 10.3788/fgxb20183912.1714.
在湿法氧化过程中采用一种自制的新型红外光源显微镜和CCD相机俯视成像系统监测被氧化晶圆片上氧化标记点颜色的变化,通过CCD相机得到的氧化标记点尺寸大小与实际氧化标记点尺寸大小的比例计算,由氧化标记点变化颜色的尺寸大小获得实际晶圆被氧化尺寸大小,反馈调节氧化工艺,保证控制垂直腔面发射激光器(VCSELs)的氧化孔径精度在1 m。根据氧化实验总结高Al组分含量对氧化孔形状影响、氧化速率随温度变化及氧化深度随时间变化规律,得到在炉温420℃、水浴温度90℃、氧化载气N
2
流量200 mL/min的工艺条件下,氧化速率为0.31 m/min,实现量产高速调制425 Gbit/s的850 nm VCSELs。室温条件下,各子单元器件工作电压为2.2 V,阈值电流为0.8 mA,斜效率为0.8 W/A。在6 mA工作电流下,光功率为4.6 mW。
In the wet-oxidation process
we used a new home-made infrared light source microscope and a CCD observer to look down at the imaging system to monitor changes in the color of oxidized spots on the wafer being oxidized. According to this ratio which was calculated by comparing the size of the oxidized point obtained by the CCD camera with the actual oxidation point size
the size of the actual oxidized wafer was obtained by the color change size of the oxidized point. By observing the color change size of the oxidized point
the oxidation process was adjusted to ensure the accuracy of controlling the oxidation aperture of vertical cavity surface emitting lasers(VCSELs) to within 1 m. Based on the oxidation experiments
the effect of high Al content on the shape of oxidation pores
the change of oxidation rate with temperature and the change of oxidation depth with time were obtained. When the furnace temperature was 420℃
the temperature of the water bath was 90℃ and the flow rate of the oxidizing gas was 200 mL/min
the oxidation rate was 0.31 m/min and modulation rate of the 850 nm VCSELs was 425 Gbit/s. Room temperature conditions
the sub-unit operating voltage 2.2 V
the threshold current 0.8 mA
the ramp efficiency of 0.8 W/A
when the current was 6 mA
the power was 4.6 mW.
SHIN J H, HAN Il Y, LEE Y H. Very small oxide-confined vertical microcavity lasers with high-contrast AlGaAs-Alx/Oy mirrors[J]. IEEE Photon. Technol. Lett., 1998, 10(6):754-756.
HUFFAKER D L, DEPPE D G, KUMAR K, et al.. Native-oxide defined ring contact for low threshold vertical-cavity lasers[J]. Appl. Phys. Lett., 1994, 65(1):97-99.
ALMUNEAU G, CHOUCHANE F, CALVEZ S, et al.. Three dimensional confinement technology based on buried patterned AlOx layers:potentials and applications for VCSEL arrays[J]. IEEE, 2013, 9(6):1-3.
侯立峰, 钟景昌, 赵英杰, 等. 垂直腔面发射激光器的湿法氧化速率规律[J]. 中国激光, 2009, 36(4):790-793. HOU L F, ZHONG J H, ZHAO Y J, et al.. Law of wet oxidation rate in vertical-cavity surface-emithing lasers[J]. Chin. J. Lasers, 2009, 36(4):790-793. (in Chinese)
刘迪, 宁永强, 秦莉, 等. 氧化孔径对高功率垂直腔面发射激光器温升的影响[J]. 中国激光, 2012, 39(5):27-32. LIU D, NING Y Q, QIN L, et al.. Effect of oxide aperture on temperature rise in high power vertical-cavity surface-emithing laser[J]. Chin. J. Lasers, 2012, 39(5):27-32. (in Chinese)
MOSER P. VCSEL Fundamentals [M]. Berlin:Springer International Publishing, 2016.
DALLESASSE J M, DEPPE D G. Ⅲ-Ⅴ oxidation:discoveries and applications in vertical-cavity surface-emitting lasers[J]. IEEE, 2013, 101(10):2234-2342.
ASHBY C I H. Dynamics of wet oxidation of high-Al-content Ⅲ-Ⅴ materials[C]. Mrs Proceedings, Boston, 1998, 535:179-188.
KOLEY B, DAGENAIS M, JIN R, et al.. Kinetics of growth of AlAs oxide in selectively oxidized vertical cavity surface emitting lasers[J]. J. Appl. Phys., 1997, 82(9):4586-4589.
董立闽, 郭霞, 渠红伟, 等. 圆形台面中的AlAs/AlGaAs湿法氧化动力学规律研究[C]. 第十三届全国化合物半导体材料、微波器件和光电器件学术会议暨第九届全国固体薄膜学术会议, 大连, 2004. DONG L M, GUO X, LIANG H W, et al.. Study on the wet-oxidation kinetics of AlAs/AlGaAs in a circular mesa[C]. The 13th National Conference on Compound Semiconductor Materials, Microwave Devices and Optoelectronic Devices and The 9th National Solid Film Conference, Dalian, 2004. (in Chinese)
DALLEAASSE J M, HOLONYAK N. Oxidation of Al-bearing Ⅲ-Ⅴ materials:a review of key progress[J]. J. Appl. Phys., 2013, 113(5):051101.
王立军, 宁永强, 秦莉, 等. 大功率半导体激光器研究进展[J]. 发光学报, 2015, 36(1):1-19. WANG L J, NING Y Q, QIN L, et al.. Development of high power diode Laser[J]. Chin. J. Lumin., 2015, 36(1):1-19. (in Chinese)
CHOQUETTE K D, GEIB K M, HOU H Q, et al.. The technology and applications of selective oxidation of AlGaAs[C]. Proceeding of The 10th Conference on Semiconducting and Insulating Materials, Berkeley, 1999:209-213.
MARIGO-LOMBART L, CALVEZ S, ARNOULT A, et al.. Oxide-confined VCSELs fabricated with a simple self-aligned process flow[J]. Semicond. Sci. Technol., 2017, 32(12):1245-1249.
FENG Y, LIU G J, YAN C L, et al.. A study on the law of oxidation rate in GaAs-based VCSELs[J]. Opt. Int. J. Light Electron Opt., 2014, 125(18):5124-5127.
LEI C, SAKAMOTO A, KILCOYNE S P, et al.. Fabrication control during AlAs oxidation of the VCSELs via optical probing technique of AlAs lateral oxidation (OPTALO)[J]. SPIE, 2002, 4649:46490C.
ALMUNEAU G, LAAROUSSI Y, CHEVALLIER C, et al.. Technologies of oxide confinement and high contrast grating mirrors for mid-infrared VCSELs[C]. Proceedings of The International Conference on Transparent Optical Networks, Graz, 2014, 3(10):1-4.
RIAZIAT M, REED D, KOR A. Controlling the parameters of wet lateral oxidation for VCSEL fabrication[J]. SPIE, 2016, 9766:97660H.
CHOQUETTE K D, GEIB K M, ASHBY C I H, et al.. Advances in selective wet oxidation of AlGaAs alloys[J]. IEEE J. Select. Top. Quant. Electron, 1997, 3(3):916-926.
0
Views
111
下载量
3
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution