浏览全部资源
扫码关注微信
内蒙古民族大学 物理与电子信息学院,内蒙古 通辽,028000
Received:09 July 2018,
Revised:16 October 2018,
Published:05 December 2018
移动端阅览
王伟华, 侯新蕊,. 硼烯纳米带能带结构和态密度的第一性原理研究[J]. 发光学报, 2018,39(12): 1674-1678
WANG Wei-hua, HOU Xin-rui,. Energy Band Structure and Density of States of Borophene Nanoribbons: The First Principle Calculations[J]. Chinese Journal of Luminescence, 2018,39(12): 1674-1678
王伟华, 侯新蕊,. 硼烯纳米带能带结构和态密度的第一性原理研究[J]. 发光学报, 2018,39(12): 1674-1678 DOI: 10.3788/fgxb20183912.1674.
WANG Wei-hua, HOU Xin-rui,. Energy Band Structure and Density of States of Borophene Nanoribbons: The First Principle Calculations[J]. Chinese Journal of Luminescence, 2018,39(12): 1674-1678 DOI: 10.3788/fgxb20183912.1674.
基于密度泛函理论,采用第一性原理的方法计算H修饰边缘不同宽度硼稀纳米带的电荷密度、电子能带结构、总态密度和分波态密度。结果表明,硼烯纳米带的宽度大小影响着材料的导电性能,宽度5的硼烯纳米带是间接带隙简并半导体,带隙值为0.674 eV,而宽度7的硼烯纳米带却具有金属材料的性质。分波态密度表明,宽度5的硼烯纳米带的费米能级附近主要是由B-2s、2p电子态贡献,H-1s主要贡献于下价带且具有局域性,消除了材料边缘的不稳定性。宽度7的B-2p和H-1s电子态贡献的导带和价带处于主导地位,费米能级附近B-2p和H-1s电子态的杂化效应影响材料的整体发光性能。
The charge density
energy band structure
density of states and project density of states of H-terminated borophene nanoribbons with different widths are studied using the first principle calculations based on density functional theory. The results show that the conductive properties of boron nanoribbons with different widths are completely different. The borophene nanoribbons with width-5 are degenerate semiconductors and the band gap value is 0.674 eV. The energy band structure of borophene nanoribbons with width-7 has metal properties. The project density of states indicates that the near Fermi level of width-5 is mainly contributed by B-2s
2p electronic states. The low-valence band is induced by H-1s electronic states with localization for eliminating unstability of edge. The contributions of B-2p and H-1s electronic states are dominant with width-7. The hybridization effect of B-2p and H-1s electron states near the Fermi energy level affects the whole material property.
MANNIX J A, ZHOU X F, KIRALY B, et al.. Synthesis of borophenes:anisotropic, two-dimensional boron polymorphs[J]. Science, 2015, 350(6267):1513-1516.
LIU J, KIM G H, XUE Y, et al.. Graphene oxide nanoribbon as hole extraction layer to enhance efficiency and stability of polymer solar cells[J]. Adv. Mater., 2014, 26(5):786-790.
AMANDA L, HIGGINBOTHAM, DMITR V, et al.. Lower-defect graphene oxide nanoribbons from multiwalled carbon nanotubes[J]. ACS Nano, 2010, 4(4):2059-2069.
JIA X T, CAMPOS-DELGADO J, TERRONES M, et al.. Graphene edges:a review of their fabrication and characterization[J]. Nanoscale, 2011, 3(1):86-95.
YAN Q, HUANG B, YU J, et al.. Intrinsic current-voltage characteristics of graphene nanoribbon transistors and effect of edge doping[J]. Nano Lett., 2007, 7(6):1469.
MA S, BAO K, TAO Q, et al.. Investigating robust honeycomb borophenes sandwiching manganese layers in manganese diboride[J]. Inorganic Chem., 2016, 55(21):11140-11146.
MA F X, JIAO Y L, GAO G P, et al.. Graphene-like two-dimensional ionic boron with double diraccones at ambient condition[J]. Nano Lett. 2016, 16:3022-3028.
ZHAI H J, KIRAN B, LI J, et al.. Hydrocarbon analogues of boron clusters planarity, aromaticity and an tiaromaticity[J]. Nat. Mater., 2003, 2:827-833.
TANG Z, WANG X F, WANG L, et al.. Stable and metallic borophene nanoribbons from first-principles calculations[J]. Mater. Chem. C, 2016, 4:6380-6385.
GARCA-FUENTE A, CARRETE J, VEGA A, et al.. What will freestanding borophene nanoribbons look like? An analysis of their possible structures, magnetism and transport properties[J]. Phys. Chem. Chem. Phys., 2017, 19:1054.
MENG F, CHEN X, SUN S. Electronic and magnetic properties of pristine and hydrogenated borophene nanoribbons[J]. Phys. E, 2017, 91:106-112.
LIU J, ZHANG L, XU L. Elastic, electronic structure, and optical properties of orthorhombic Na3AlF6:a first-principles study[J]. Ionics, 2018, 24(5):1603-1615.
AVOURIS P. Molecular electronics with carbon nanotubes[J]. Acc. Chem. Res., 2002, 35:1026-1034.
JAVEY A, KIM H, BRINK M, et al..High-kappa dielectrics for advanced carbon-nanotube transistors and logic gates[J]. Nat. Mater., 2002, 1:241-246.
GIANNOZZI P, BARONI S, BONINI N, et al.. QUANTUM ESPRESSO:a modular and open-source software project for quantum simulations of materials[J]. J. Phys. Condens. Matter, 2009, 21:395502.
0
Views
102
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution