DING Zhao-hua, PEI Zhi-cheng, ZHAO Ying etc. Influence of Magnetic Field on The Properties of Weak-coupling Polaron in Graphene[J]. Chinese Journal of Luminescence, 2018,39(12): 1669-1673
DING Zhao-hua, PEI Zhi-cheng, ZHAO Ying etc. Influence of Magnetic Field on The Properties of Weak-coupling Polaron in Graphene[J]. Chinese Journal of Luminescence, 2018,39(12): 1669-1673 DOI: 10.3788/fgxb20183912.1669.
Influence of Magnetic Field on The Properties of Weak-coupling Polaron in Graphene
The influence of magnetic field on the polaron properties in the weak coupling of electron and surface optical phonons in monolayer graphene was investigated by using the improved linear combination operator method and the Pekar variational method. The dependences of the energies of the ground state
E
0
the first excited state
E
1
and the transition frequency
of weak-coupling polaron on magnetic field
B
and Debye cut-off wavenumber
k
d
were derived. Numerical calculations show that the ground state energy
E
0
of weak-coupling polaron near the Dirac point is an increasing function of strength of magnetic field
B
and Debye cut-off wavenumber
k
d
the curves of the polaron's ground state energy
E
0
of weak-coupling polaron will split into two equal and opposite band; both the first excited state energy
E
1
and the transition frequency
are also an increasing function with strength of magnetic field
B
and Debye cutoff wavenumbers
k
d
.
关键词
Keywords
references
STAUBER T, PERES N M. Effect of Holstein phonons on the electronic properties of graphene[J]. J. Phys.:Condens. Matter, 2008, 20(5):055002-1-7.
HENRIKSEN E A, CADDEN Z P, JIANG Z, et al.. Interaction-induced shift of the cyclotron resonance of graphene using infrared spectroscopy[J]. Phys. Rev. Lett., 2010, 104(6):067404.
ZHAO Y, CADDEN Z P, JIANG Z, et al.. Symmetry breaking in the zero-energy landau level in bilayer graphene[J]. Phys. Rev. Lett., 2010, 104(6):066801.
WANG Z W, LI S S. Lattice relaxation of the graphene under high magnetic field[J]. J. Phys.:Condens. Matter, 2012, 24:265302.
ZHU J, BADALYAN S M, PEETERS F M. Plasmonic excitations in coulomb-coupled N-layer graphene structures[J]. Phys. Rev. B, 2013, 87(8):085401.
LI W P, WANG Z W, YIN J W. The effects of the magnetopolaron on the energy gap opening in graphene[J]. J. Phys.:Condens. Matter, 2012, 24(13):135301-1-5.
WANG Z W, LIU L, LI Z. Energy gap induced by the surface optical polaron in graphene on polar substrates[J]. Appl. Phys. Lett., 2015, 106(10):1016011-1-4.
DING Z H, ZHAO Y, XIAO J L. The magnetic effect of polaron in monolayer graphene[J]. J. Low Temp. Phys., 2016,182(5):162-169.
DING Z H, ZHAO Y, XIAO J L. The properties of strong couple bound polaron in monolayer graphene[J]. Superlatt. Microstruct., 2016, 97:298-302.
杨杨, 吴丽娜, 祁立娜, 等. 自旋对量子线中强耦合磁极化子的影响[J]. 内蒙古民族大学学报(自然科学版),2014, 29(1):7-10. YANG Y, WU L N, QI L N, et al.. Effect of spin of strong-coupled magnetopolaron in quantum wire[J]. J. Inner Mongolia Univ. Nation., 2014, 29(1):7-10. (in Chinese)
FUCHS J N, LEDER P. Spontaneous parity breaking of graphene in the quantum Hall regime[J]. Phys. Rev. Lett., 2007, 98(1):016803.
LI W P, WANG Z W, YIN J W. The effects of the magnetopolaron on the energy gap opening in graphene[J]. J. Phys.:Condens. Matter, 2012, 24(13):135301-135305.
HUYBRECHTS W J. Internal excited state of the optical polaron[J]. J. Phys. C:Solid State Phys., 1977, 10(19):3761-3768.
LEE T D, LOW F E, PINES D. The motion of slow electrons in a polar crystal[J]. Phys. Rev., 1953, 90(2):297-302.
VILJAS J K, HEIKKILA T T. Electron-phonon heat transfer in monolayer and bilayer graphene[J]. Phys. Rev. B, 2010, 81(24):245404.
MILLER D L, KUBISTA K D, RUTTER G M, et al.. Observing the quantization of zero mass carriers in graphene[J]. Sci. Mag., 2009, 324(5929):924-927.