GUO Wei, WU Jian, WANG Chun-yan etc. SERS Effect and SEF Effect of Silver Nanoparticles Applied in Optical Detection of Microfluidic Chips[J]. Chinese Journal of Luminescence, 2018,39(11): 1633-1638
GUO Wei, WU Jian, WANG Chun-yan etc. SERS Effect and SEF Effect of Silver Nanoparticles Applied in Optical Detection of Microfluidic Chips[J]. Chinese Journal of Luminescence, 2018,39(11): 1633-1638 DOI: 10.3788/fgxb20183911.1633.
SERS Effect and SEF Effect of Silver Nanoparticles Applied in Optical Detection of Microfluidic Chips
银纳米离子的SERS技术和SEF技术的信号检测灵敏度非常高,可以用在微流控芯片的定量分析中。为了提高微流控芯片光学检测技术的检测精度,提出一种在微通道中添加银纳米粒子来增强SYBR GreenⅠ拉曼和荧光信号的方法,并对该方法的原理和增强效果进行了研究。首先,利用准分子激光器在PMMA基板上直写刻蚀出宽200 m、深68 m的微通道,接着将制备的银前体溶液加入微通道,通过加热制备出表面增强拉曼(SERS)和表面增强荧光(SEF)基板,接下来对添加银纳米粒子前后的拉曼和荧光信号分别进行对比,进一步研究了微通道中不同浓度银纳米粒子对SYBR GREEN I的拉曼和荧光信号增强效果。添加银纳米粒子后,表面增强拉曼(SERS)实验的增强因子为3.510
3
,添加银纳米粒子的样品的荧光信号强度与不含银纳米粒子样品的荧光信号强度相比,约增加了1倍。结果表明,在微通道中检测SYBR Green I时通过增加银纳米粒子显著地增强了拉曼和荧光信号,这种方法可以用在以SYBR GreenⅠ做染料的微流控芯片检测技术中。
Abstract
SERS and SEF technology with sliver nanoparticles can achieve very high sensitivity
thus it can be used to analysis biological samples. Here
a technique was reported
which can be used to improve detection results of SYBR GreenⅠ by SERS and SEF at the same time by using silver nanoparticles in microchannels. The fundamental and enhancement effect of this method were studied. First
the excimer laser was used to write directly on the PMMA substrate to etch the microchannel with the width of 200 m and depth of 68 m. The prepared silver precursor solution was then added to the microchannel. The surface enhanced Raman(SERS) and surface enhanced fluorescence(SEF) substrate were prepared by heating. Next
the Raman and fluorescent signals were compared with and without adding silver nanoparticles. Besides
the effect of silver nanoparticles on the Raman and fluorescent signal enhancement of SYBR GREEN I in micro-channel was studied. The results show that the enhancement factor of the surface-enhanced Raman(SERS) experiment with silver nanoparticles is 3.510
3
. The intensity of the fluorescence signal of the samples with silver nanoparticles increases by about 1 time compared with that of the fluorescent signal without silver nanoparticles. When SYBR Green Ⅰ is detected in the microchannel
it significantly increases the Raman and fluorescent signals by adding silver nanoparticles. It can be used in microfluidic chip technology with SYBR GreenⅠ dye.
关键词
Keywords
references
顾仁敖, 冷永章, 胡晓焜. 银溶胶上吸附异菸酸的表面增强喇曼散射(SERS)光谱[C]. 全国第五届分子光谱学术报告会, 海口, 1988:153-154. GU R A, LENG Y Z, HU X K. The surface enhanced Raman scattering (SERS) spectra adsorbed on silver sol[J]. Proceedings of The 5th National Academy of Molecular Spectroscopy, Haikou, 1988:153-154. (in Chinese)
李盼, 聂永惠, 滕渊洁, 等. 不同Ag壳厚度Au@Ag纳米粒子的调控制备表征及表面增强拉曼光谱的效应[J]. 发光学报, 2017, 38(9):1233-1239. LI P, NIE Y H, TENG Y J, et al.. Preparation and characterization of Au@Ag nanoparticles with different thickness of Ag shell and their effects on surface-enhanced Raman scattering detection[J]. Chin. J. Lumin., 2017, 38(9):1233-1239. (in Chinese)
张友林, 孔祥贵, 薛彬, 等. 水溶液银纳米晶聚集对表面增强拉曼散射的影响[J]. 发光学报, 2014, 35(2):263-267. ZHANG Y L, KONG X G, XUE B, et al.. Effect of Aggregation of Ag nanoparticles suspended in aqueous solution on surface enhanced Raman scattering[J]. Chin. J. Lumin., 2014, 35(2):263-267. (in Chinese)
HOSSAINM K. Surface-enhanced Raman scattering:a technique of choice for molecular detection[J]. Mater. Sci. Forum Trans. Tech. Publications, 2013, 754:143-169.
何鑫, 张梅, 冯晋阳, 等. 金属银增强荧光的最新研究进展[J]. 稀有金属材料与工程, 2011, 40(3):559-564. HE X, ZHANG M, FENG J Y, et al.. New research progress of metallic silver enhanced fluorescence[J]. Rare Met. Mater. Eng., 2011, 40(3):559-564. (in Chinese)
L G W, SHEN H M, CHENG Y Q, et al.. Advances in localized surface plasmon enhanced fluorescence[J]. Chin. Sci. Bull., 2017, 60(33):3169-3179.
NOVO C, FUNSTON A M, MULVANEY P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy[J]. Nat. Nanotechnol., 2008, 3(10):598-602.
LIU N, TANG M L, HENTSCHEL M, et al.. Nanoantenna-enhanced gas sensing in a single tailored nanofocus[J]. Nat. Mater., 2011, 10(8):631-636.
KINKHABWALA A, YU Z, FAN S, et al.. Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna[J]. Nat. Photon., 2009, 3(11):654-657.
PUNJ D, MIVELLE M, MOPARTHI S B, et al.. A plasmonic/antenna-in-box/'platform for enhanced single-molecule analysis at micromolar concentrations[J]. Nat. Nanotechnol., 2013, 8(7):512-516.
刘丽双, 丑修建, 陈涛, 等. 银纳米颗粒对纳米金刚石的拉曼及荧光增强特性研究[J]. 物理学报, 2016, 65(19):197301. LIU L S, CHOU X J, CHEN T, et al.. Effects of silver nanoparticles on Raman spectrum and fluorescence enhancement of nano-diamond[J]. Acta Phys. Sinica, 2016, 65(19):197301. (in Chinese)
徐良敏, 张正龙, 蔡晓燕, 等. 金属表面荧光增强的物理增强机制[J]. 发光学报, 2009, 30(3):373-378. XU L M, ZHANG Z L, CAI X Y, et al.. Physical mechanisms of fluorescence enhancement at metal surface[J]. Chin. J. Lumin., 2009, 30(3):373-378. (in Chinese)
董军, 邵红敏, 张韩, 等. 有机分子隔离层对机械抛光金属银表面的罗丹明6G荧光增强效应的影响[J]. 发光学报, 2012, 33(3):314-317. DONG J, SHAO H M, ZHANG H, et al.. Surface enhanced fluorescence from physically polished silver substrate decorated with and without organic molecule layer[J]. Chin. J. Lumin., 2012, 33(3):314-317. (in Chinese)
WEIMER W A, DYER M J. Tunable surface plasmon resonance silver films[J]. Appl. Phys. Lett., 2001, 79(19):3164-3166.
KELLY K L, CORONADO E, ZHAO L L, et al.. The optical properties of metal nanoparticles:the influence of size, shape, and dielectric environment[J]. J. Phys. Chem. B, 2003, 107:668-677.