浏览全部资源
扫码关注微信
1. 哈尔滨工业大学 可调谐激光技术重点实验室,黑龙江 哈尔滨,150001
2. 长春中国光学科技馆,吉林 长春,130022
3. 长春理工大学 吉林省固体激光技术与应用重点实验室,吉林 长春,130022
Received:22 January 2018,
Revised:10 April 2018,
Published Online:11 June 2018,
Published:05 November 2018
移动端阅览
吴春婷, 姜妍, 戴通宇等. 2 μm掺钬固体激光器研究进展[J]. 发光学报, 2018,39(11): 1584-1597
WU Chun-ting, JIANG Yan, DAI Tong-yu etc. Research Progress of 2 μm Ho-doped Solid-state Laser[J]. Chinese Journal of Luminescence, 2018,39(11): 1584-1597
吴春婷, 姜妍, 戴通宇等. 2 μm掺钬固体激光器研究进展[J]. 发光学报, 2018,39(11): 1584-1597 DOI: 10.3788/fgxb20183911.1584.
WU Chun-ting, JIANG Yan, DAI Tong-yu etc. Research Progress of 2 μm Ho-doped Solid-state Laser[J]. Chinese Journal of Luminescence, 2018,39(11): 1584-1597 DOI: 10.3788/fgxb20183911.1584.
2 m掺钬固体激光器的输出波长处在大气窗口和人眼安全区,在激光雷达、激光测距、光电对抗和激光医学等方面都有重要应用,因此在2 m固体激光器研究领域中成为一个研究热点。本文介绍了2 m掺钬固体激光器能级系统及常用的掺钬晶体,并对基于这些晶体的钬激光器研究进展进行了综述,最后对2 m钬固体激光器的未来发展方向等进行展望。
The 2 m wavelength solid-state laser doped with holmium has became a research hotspot and been applied in many fields
including laser radar
laser ranging
electrooptical countermeasures
and laser medicine
because of its output wavelength in range of atmosphere window
strong absorption band of water and safe area of eyes. Firstly
research progresses of the level system of 2 m wavelength solid-state laser doped with holmium are summarized
as well as those popular crystals doped with holmium. Then
the progress of those lasers based on other crystals doped with holmium is given. Finally
the development of Ho-doped solid-state laser is prospected.
王永仲. 现代军用光学技术[M]. 北京:科学出版社, 2009. WANG Y Z. Modern Military Optical Technology[M]. Beijing:Science Press, 2009. (in Chinese)
PHILIP V P, CHUNG T Y, DAVID G. Laser photostimulation of wound healing in diabetic mice is not brought about by ameliorating diabetes[J]. Lasers Surg. Med., 2012, 44(1):26-29.
LOMBARD L, VALLA M, PLANCHAT C, et al.. Eye safe coherent detection wind lidar based on a beam-combined pulsed laser source[J]. Opt. Lett., 2015, 40(6):1030-1033.
SHOKEN I, KOHEI M, HIROTAKE F, et al.. Coherent 2m differential absorption and wind lidar with conductively cooled laser and two-axis scanning device[J]. Appl. Opt., 2010, 49(10):1809-1817.
吴月, 翟刚, 姚治海. 2m波段激光器的发展状况[J]. 激光杂志, 2008, 29(4):3-4. WU Y, ZHAI G, YAO Z H. The development of 2m wave band laser[J]. Laser J., 2008, 29(4):3-4. (in Chinese)
欣云, 叶兵, 方万利. 钬激光应用与进展[J]. 激光与光电子学进展, 2012, 49(4):22-27. XIN Y, YE B, FANG W L. Application and development of holmium laser[J]. Laser Optoelectron. Prog., 2012, 49(4):22-27. (in Chinese)
WEBER M, BASS M, VARITIMOS T, et al.. Laser action from Ho3+, Er3+, and Tm3+ in YAlO3[J]. IEEE J. Quant. Electron., 2003, 9(11):1079-1086.
朱箭, 张光寅. Ho激光器阈值的理论分析[J]. 物理学报, 1996, 45(8):1337-1343. ZHU J, ZHANG G Y. Theoretical analysis for Ho laser threshold[J]. Acta Phys. Sinica, 1996, 45(8):1337-1343. (in Chinese)
ELDER I F, PAYNE M J P. Lasing in diode-pumped thulium and thulium, holmium YAP[C]. Advanced Solid State Lasers, San Francisco, 1996:IL9.
MALINOWSKI M, PIRAMIDOWICZ R, FRUKACZ Z, et al.. Spectroscopy and upconversion processes in YAlO3:Ho3+ crystals[J]. Opt. Mater., 1999, 12(4):409-423.
MALINOWSKI M, WNUK A, FRUKACZ Z, et al.. Room temperature photon avalanche in Ho3+ doped YAG, YAP, YLF and ZBLAN[J]. J. Alloys Compd., 2001, 323:731-735.
丁宇. 2m单掺Ho钒酸盐固体激光器特性研究[D]. 哈尔滨:哈尔滨工业大学, 2015. DING Y. Research on Two Micro-meters Holmium Single-doped Vanadates Host Solid-state Laser[D]. Harbin:Harbin Institute of Technology, 2015. (in Chinese)
郑亮亮. 单掺Ho:YAP晶体光谱特性和激光实验研究[D]. 哈尔滨:哈尔滨工业大学, 2008. ZHENG L L. The Investigation of Spectroscopic Properties and Lasing Performance of Ho-doped YAP Crystal[D]. Harbin:Harbin Institute of Technology, 2008. (in Chinese)
段小明. 常温氧化物基质单掺Ho固体激光器的研究[D]. 哈尔滨:哈尔滨工业大学, 2012. DUAN X M. Research on Holmium Singly-doped Oxide Host Solid-state Laser at Room Temperature[D]. Harbin:Harbin Institute of Technology, 2012. (in Chinese)
SHAW L B, CHANG R S, DJEU N. Measurement of up-conversion energy-transfer probabilities in Ho:Y3Al5O12 and Tm:Y3Al5O12[J]. Phys. Rev. B:Condens. Matter, 1994, 50(10):6609.
DONG Q, ZHAO G, CAO D, et al.. Polarized spectral analysis of Ho3+ ions in biaxial YAlO3 crystal for 2m lasers[J]. J. Phys. D:Appl. Phys., 2009, 42(42):45114-45119.
WEBER M J, BASS M, ANDRINGA K, et al.. Czochralski growth and properties of YAlO3, laser crystals[J]. Appl. Phys. Lett., 1969, 15(10):342-345.
QIAN C P, YAO B Q, DUAN X M, et al.. A 52-mJ Ho:YAG master oscillator and power amplifier with kilohertz pulse repetition frequency[J]. Chin. Phys. Lett., 2014, 31(9):57-60.
LAN R, LOIKO P, MATEOS X, et al.. Passive Q-switching of microchip lasers based on Ho:YAG ceramics[J]. Appl. Opt., 2016, 55(18):4877.
SAHU J K, CLARKSON W A. Efficient holmium-doped solid state lasers pumped by a Tm-doped silica fiber laser[J]. SPIE, 2004, 5620:46-55.
SO S, MACKENZIE J I, SHEPHERDD P, et al.. Intra-cavity side-pumped Ho:YAG laser[J]. Opt. Express, 2006, 14(22):10481-10487.
YAO B Q, DUAN X M, LI Y F, et al.. Continuous-wave operation of a room-temperature Tm:YAP-pumped Ho:YAG laser[J]. Chin. Phys. Lett., 2008, 6(7):520-522.
IBACH C R, GUSTAFSON E J, CHICKLIS E P, et al.. 50-mJ, Q-switched, 2.09-m holmium laser resonantly pumped by a diode-pumped 1.9-m thulium laser[J]. Opt. Lett., 2003, 28(12):1016.
SHEN D Y, CLARKSON W A, COOPER L J, et al.. Efficient single-axial-mode operation of a Ho:YAG ring laser pumped by a Tm-doped silica fiber laser[J]. Opt. Lett., 2004, 29(20):2396-2398.
CHENG X J, XU J Q, WANG M J, et al.. Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature[J]. Laser Phys. Lett., 2010, 7(5):351-354.
LAMRINI S, KOOPMANN P, SCHAFER M, et al.. Efficient high-power Ho:YAG laser directly in-band pumped by a GaSb-based laser diode stack at 1.9m[J]. Appl. Phys. B, 2012, 106(2):315-319.
SHEN Y J, YAO B Q, DUAN X M,et al.. 103 W in-band dual-end-pumped Ho:YAG laser[J]. Opt. Lett., 2012, 37(17):3558.
CHEN Z Y, YAO B Q, DU Y Q, et al.. A Cr:ZnS saturable absorber for a Tm:YLF pumped passively Q-switched Ho:YAG laser[J]. Laser Phys. Lett., 2013, 10(10):105001.
BUDNI P A, LEMONS M L, MOSTO J R, et al.. High-power/high-brightness diode-pumped 1.9-m thulium and resonantly pumped 2.1-m holmium lasers[J]. IEEE J. Select. Top. Quant. Electron., 2000, 6(4):629-635.
BARNES N P, WALSH B M, FILER E D. Ho:Ho upconversion:applications to Ho lasers[J]. J. Opt. Soc. Am. B, 2003, 20(6):1212-1219.
SCHELLHORN M, HIRTH A, KIELECK C. Ho:YAG laser intracavity pumped by a diode-pumped Tm:YLF laser[J]. Opt. Lett., 2003, 28(20):1933-1935.
SO S, MACKENZIE J I, SHEPHERD D P, et al.. High-power slab-based Tm:YLF laser for in-band pumping of Ho:YAG[J]. SPIE, 2008, 6871:1-10.
CHENG X J, XU J Q, WANG M J, et al.. Ho:YAG ceramic laser pumped by Tm:YLF lasers at room temperature[J]. Laser Phys. Lett., 2010, 7(5):351-354.
KWIATKOWSKI J, JABCZYNSKI J K, ZENDZIAN W, et al.. High repetition rate, Q-switched Ho:YAG laser resonantly pumped by a 20 W linearly polarized Tm:fiber laser[J]. Appl. Phys. B, 2014, 114(3):395-399.
WANG L, GAO C, GAO M, et al.. A resonantly-pumped tunable Q-switched Ho:YAG ceramic laser with diffraction-limit beam quality[J]. Opt. Express, 2014, 22(1):254.
ZHAO T, WANG F, SHEN D Y. High-power Ho:YAG laser wing-pumped by a Tm:fiber laser at 1933 nm[J]. Appl. Opt., 2015, 54(7):1594-1597.
张庆礼, 殷绍唐, 王爱华, 等. GGG系列激光晶体研究进展[J]. 量子电子学报, 2002, 19:481-484. ZHANG Q L, YIN S T, WANG A H, et al.. Research progress of the laser crystal GGG species[J]. Chin. J. Quant. Electron., 2002, 19:481-484. (in Chinese)
宋平新, 赵志伟, 徐晓东, 等. Tm:YAG晶体的研究进展[J]. 人工晶体学报, 2005, 34:131-135. SONG P X, ZHAO Z W, XU X D, et al.. Research progress in Tm:YAG crystal[J]. J. Synth. Cryst., 2005, 34:131-135. (in Chinese)
MACKENZIE J I, LI C, SHEPHERD D P, et al.. Modeling of high-power continuous-wave Tm:YAG side-pumped double-clad waveguide lasers[J]. IEEE J. Quant. Electron., 2002, 38(2):222-230.
DUAN X M, YAO B Q, SONG C W, et al.. Room temperature efficient continuous wave and Q-switched Ho:YAG laser double-pass pumped by a diode-pumped Tm:YLF laser[J]. Laser Phys. Lett., 2008, 5(11):800-803.
CHEN X, HUANG Z, JIN G. Research on output characteristics of continuous-wave operation of Ho:YAG laser pumped by Tm:YLF laser[J]. SPIE, 2013, 8904:890419.
PREMKUMAR H B, RAVIKUMAR B S, SUNITHA D V, et al.. Investigation of structural and luminescence properties of Ho3+, doped YAlO3, nanophosphors synthesized through solution combustion route[J]. Spectrochim. Acta Part A, 2013, 115(11):234-243.
FENG T L, ZHAO S Z, YANG K J, et al.. A diode-pumped passively Q-switched Tm,Ho:YAP laser with a single-walled carbon nanotube[J]. Laser Phys. Lett., 2013, 10(9):095001.
YAO B Q, LI L J, ZHENG L L, et al.. Diode-pumped continuous wave and Q-switched operation of a c-cut Tm,Ho:YAlO3 laser[J]. Opt. Express, 2008, 16(7):5075.
YAO B Q, ZHENG L L, YANG X T, et al.. Judd-Oflet analysis of spectrum and laser performance of Ho:YAP crystal end-pumped by 1.91m Tm:YLF laser[J]. Chin. Phys. B, 2009, 18(3):1009-1013.
LI L J, YAO B Q, WANG Z G, et al.. Continuous wave and AO Q-switch operation of a b-cut Tm,Ho:YAP laser with dual wavelengths pumped by a laser diode of 792 nm[J]. Laser Phys., 2010, 20(1):205-208.
DUAN X M, YAO B Q, LI G, et al.. High efficient continuous wave operation of a Ho:YAP laser at room temperature[J]. Laser Phys. Lett., 2009, 6(4):279-281.
WANG Z, MA X, LI W. Efficient Ho:YAP laser dual-end-pumped by Tm fiber laser[J]. Opt. Rev., 2014, 21(2):150-152.
CUI Z, DUAN X M, YAO B Q, et al.. Resonantly pumped 2.118m Ho:YAP laser Q-switched by a Cr2+:ZnS as a saturable absorber[J]. Laser Phys. Lett., 2015, 12:105002.
DUAN X M, LIN W M, CUI Z, et al.. Resonantly pumped continuous-wave mode-locked Ho:YAP laser[J]. Appl. Phys. B, 2016, 122(4):1-5.
DUAN X M, YAO B Q, YANG X T, et al.. Room temperature efficient continuous wave and Q-switched operation of a Ho:YAP laser[J]. Appl. Phys. B, 2009, 96(2-3):379-383.
DAI T Y, JU Y L, SHEN Y J, et al.. High-efficiency continuous-wave and Q-switched operation of a resonantly pumped Ho:YAP ring laser[J]. Laser Phys., 2012, 22(8):1292-1294.
DUAN X M, YANG C H, SHEN Y J, et al.. High-power in-band pumped a-cut Ho:YAP laser[J]. J. Russian Laser Res., 2014, 35(3):239-243.
YAO B Q, DUAN X M, ZHENG L L, et al.. Continuous-wave and Q-switched operation of a resonantly pumped Ho:YAlO3 laser[J]. Opt. Express, 2008, 16(19):14668.
LAN R, LOIKO P, MATEOS X, et al.. Passive Q-switching of Ho:YAG ceramic lasers at 2.1m[C]. Lasers and Electro-Optics, IEEE, San Jose,
2016:STu4M.6.
YAO B Q, ZHENG L L, ZHOU R L, et al.. Holmium laser in-band pumped by a thulium laser in the same host of YAlO3[J]. Laser Phys., 2008, 18(12):1501.
DUAN X M, YAO B Q, ZHENG L L, et al.. Lasing of diode-pumped c-cut Tm, Ho:YAlO3[J]. Laser Phys., 2008, 18(8):951-953.
YU T, YE X, YANG Z, et al.. All fiber thulium-doped fiber laser pumped Q-switched Ho:YAP laser[C]. International Symposium on Laser Interaction with Matter, Chengdu, China, 2017:101731M.
DUAN X M, YAO B Q, YANG X T, et al.. High efficient, high repetition rate Q-switched Ho:YAP laser[C]. Lasers & Electro Optics & The Pacific Rim Conference on Lasers and Electro-Optics, Shanghai, China, 2009:1-2.
ZHOU R L, JU Y L, WANG W, et al.. Acousto-optic Q-switched operation Ho:YAP laser pumped by a Tm-doped fiber laser[J]. Chin. Phys. Lett., 2011, 28(7):74210-074210.
YANG X T, MA X Z, LI W H, et al.. Q-switched Ho:YAlO3, laser pumped by Tm:YLF laser at room temperature[J]. Laser Phys., 2011, 21(12):2064-2067.
YAO C, YANG X T, LI W H. A high efficiency Ho:YAlO3, laser pumped by Tm:YLF laser with a volume bragg grating[J]. Laser Phys., 2012, 22(3):499-502.
SHEN Y J, YAO B Q, DUAN X M, et al.. High-power and efficiency continuous-wave operation of a-cut Ho:YAP laser at room temperature[J]. Laser Phys., 2012, 22(4):712-714.
ZHANG Y J, LI G, ZHAO Y Y, et al.. In-band pumped Ho:YAP laser by Tm-doped fiber laser at 1936 and 1948 nm, respectively[J]. Laser Phys., 2012, 22(2):415-417.
杨晓涛. 常温谐振泵浦Ho:YAP激光器的实验研究[D]. 哈尔滨:哈尔滨工业大学, 2009. YANG X T. Experimental Study on Resonantly Pumped Ho:YAP Laser at Room Temperature[D]. Harbin:Harbin Institute of Technology, 2009. (in Chinese)
杨晓涛, 刘友, 李文辉, 等. 2m激光晶体Ho:YAP理论及实验分析[J]. 红外与激光工程, 2012, 41(7):1733-1737. YANG X T, LIU Y, LI W H, et al.. Theoretical and experimental analysis of Ho:YAP crystal for 2m laser[J]. Infraed Laser Eng., 2012, 41(7):1733-1737. (in Chinese)
SHEN Y J, YAO B Q, DAI T Y, et al.. Performance of a c-and a-cut Ho:YAP laser at room temperature[J]. Chin. Phys. Lett., 2012, 29(3):34209-34211.
SHEN Y J, YAO B Q, DUAN X M, et al.. Q-switched operation of a-cut Ho:YAlO3 laser pumped by a diode-pumped 1.91m thulium laser[J]. Laser Phys., 2012, 22(4):661-663.
ZHU G L, HE X D, YAO B Q, et al.. Ho:YAP laser intra-cavity pumped by a diode-pumped Tm:YLF laser[J]. Laser Phys., 2013, 23(1):015002.
DAI T Y, JU Y L, DUAN X M, et al.. Single-frequency, injection-seeded Q-switched operation of a resonantly pumped Ho:YAlO3 laser at 2118 nm[J]. Appl. Phys. B, 2013, 111(1):89-92.
YU T, BAI G, YANG Z, et al.. 20.2 W CW 2.118m Ho:YAlO3 laser pumped by 1915 nm Tm-doped fiber laser[J]. SPIE, 2015, 9466:9466-1-7.
GANIJA M, SIMAKOV N, HEMMING A, et al.. Efficient, low threshold, cryogenic Ho:YAG laser[J]. Opt. Express, 2016, 24(11):11569.
YAO B Q, DUAN X M, KE L, et al.. Q-switched operation of an in-band-pumped Ho:LuAG laser with kilohertz pulse repetition frequency[J]. Appl. Phys. B, 2010, 98(2-3):311-315.
TANG Y L, XU L, WANG M J, et al.. High-power gain-switched Ho:LuAG rod laser[J]. Laser Phys. Lett., 2011, 8(2):120-124.
COLUCCELLI N, GALZERANO G, PARISI D, et al.. Diode-pumped single-frequency Tm:LiLuF4 ring laser[J]. Opt. Lett., 2008, 33(17):1951-1953.
GALZERANO G, CORNACCHIA F, PARISI D, et al.. Widely tunable 1.94-m Tm:BaY2F8 laser[J]. Opt. Lett., 2005, 30(8):854-856.
COLUCCELLI N, GALZERANO G, GATTI D, et al.. Passive mode-locking of a diode-pumped Tm:GdLiF4 laser[J]. Appl. Phys. B, 2010, 101(1):75-78.
COLUCCELLI N, LAGATSKY A, DI L A, et al.. Passive mode locking of an in-band-pumped Ho:YLiF4 laser at 2.06m[J]. Opt. Lett., 2011, 36(16):3209-3211.
FONNUM H, LIPPERT E, HAAKESTAD M W. 550 mJ Q-switched cryogenic Ho:YLF oscillator pumped with a 100 W Tm:fiber laser[J]. Opt. Lett., 2013, 38(11):1884-1886.
JI E, LIU Q, NIE M M, et al.. High-slope-efficiency 2.06m Ho:YLF laser in-band pumped by a fiber-coupled broadband diode[J]. Opt. Lett., 2016, 41(6):1237-1240.
DERGACHEV A, SMITH A, ARMSTRONG D, et al.. 3.4-m ZGP RISTRA nanosecond optical parametric oscillator pumped by a 2.05-m Ho:YLF MOPA system[J]. Opt. Express, 2007, 15(22):14404-14413.
JACOBS C, ESSER D, COLLETT O, et al.. Efficient Ho:YLF Laser pumped by a Tm:fiber laser[C]. Advanced Solid-State Lasers Congress, Paris, France, 2013:MW1C.6.
KOEN W, JACOBS C, WU L, et al.. 60 W Ho:YLF oscillator-amplifier system[J]. SPIE, 2015, 9342:93421Y.
URATA Y, WADA S. 808-nm diode-pumped continuous-wave Tm:GdVO4 laser at room temperature[J]. Appl. Opt., 2005, 44(15):3087-3092.
WALSH B M, GREW G W, BARNES N P. Energy levels and intensity parameters of Ho3+ ions in GdLiF4, YLiF4 and LuLiF4[J]. J. Phys.:Condens. Matter, 2005, 17(48):7643.
WALSH B M, BARNES N P, PETROS M, et al.. Spectroscopy and modeling of solid state lanthanide lasers:application to trivalent Tm3+ and Ho3+ in YLiF4 and LuLiF4[J]. J. Appl. Phys., 2004, 95(7):3255-3271.
AGGARWAL R L, RIPIN D J, OCHOA J R, et al.. Measurement of thermo-optic properties of Y3Al5O12, Lu3Al5O12, YAIO3, LiYF4, LiLuF4, BaY2F8, KGd(WO4)2, and KY(WO4)2 laser crystals in the 80-300 K temperature range[J]. J. Appl. Phys., 2005, 98(10):200.
CORNACCHIA F, TONCELLI A, TONELLI M. 2-m lasers with fluoride crystals:research and development[J]. Prog. Quant. Electron., 2009, 33(2-4):61-109.
ROGIN P, HULLIGER J. Liquid phase epitaxy of LiYF4[J]. J. Cryst. Growth, 1997, 179(3-4):551-558.
THOMA R E, BRUNTON G D, PENNEMAN R A, et al.. Equilibrium relations and crystal structure of lithium fluorolanthanate phases[J]. Inorg. Chem., 1969, 9(5):1096-1101.
王胜利. 1.1-m LD直接泵浦掺Ho3+固体激光技术研究[D]. 上海:上海交通大学, 2014. WANG S L. Research on Ho3+-doped Solid-state Lasers Diode-pumped at 1.1m[D]. Shanghai:Shanghai Jiao Tong University, 2014. (in Chinese)
PARISI D, MACKENZIE J I, KIM J W, et al.. Efficient in-band pumped Ho:LuLiF4 2m laser[J]. Opt. Lett., 2010, 7721(35):1-2.
SCHELLHORN M. High-energy, in-band pumped Q-switched Ho3+:LuLiF4 2 micron laser[J]. Opt. Lett., 2010, 35(15):2609-2611.
SCHELLHORN M. A comparison of resonantly pumped Ho:YLF and Ho:LLF lasers in CW and Q-switched operation[J]. Appl. Phys. B, 2011, 103(4):777-788.
LI Y F, YAO B Q, WANG Y Z. Diode-pumped CW Tm:GdVO4 laser at 1.9m[J]. Chin. Opt. Lett., 2006, 4:175-176.
LISIECKI R, SOLARZ P, DOMINIAK-DZIK G, et al.. Comparative optical study of thulium-doped YVO4, GdVO4, and LuVO4, single crystals[J]. Phys. Rev. B, 2006, 74(3):5103.
LISIECKI R, STACHOWIAK P, JEZOWSKI A, et al.. Heat generation and flow and thermal effects on optical spectra in laser diode pumped thulium-doped vanadate crystals[C]. Advances in Optical Materials, Istanbul, Turkey, 2011:AITh B6.
LI G, YAO B Q, MENG P B, et al.. High-efficiency resonantly pumped room temperature Ho:YVO4 laser[J]. Opt. Lett., 2011, 36(15):2934-2936.
NEWBURGH G A, FLEISCHMAN Z, DUBINSKⅡ M. Highly efficient dual-wavelength laser operation of cryo-cooled resonantly (in-band) pumped Ho3+:YVO4 laser[J]. Opt. Lett., 2012, 37(18):3888.
DAI T Y, DING Y, YAO B Q, et al.. High-efficiency continuous wave operation of a Ho:GdVO4 laser at room temperature[J]. Laser Phys. Lett., 2015, 12(9):095003.
YAO B Q, DING Y, DUAN X M, et al.. Efficient Q-switched Ho:GdVO4 laser resonantly pumped at 1942 nm[J]. Opt. Lett., 2014, 39(16):4755-4757.
DAI T Y, DING Y, JU Y L, et al.. High repetition frequency passively Q-switched Ho:YVO4 laser[J]. Infrared Phys. Technol., 2015, 72:254-257.
DUAN X M, LIN W M, DING Y, et al.. High-power resonantly pumped passively Q-switched Ho:GdVO4 laser[J]. Appl. Phys. B, 2016,122(1):22.
LOIKO P A, YUMASHEV K V, MATROSOV V N, et al.. Dispersion and anisotropy of thermo-optic coefficients in tetragonal GdVO4 and YVO4 laser host crystals[J]. Appl. Opt., 2013, 52(4):698.
WU S F, WANG G F, XIE J L, et al.. Growth of large birefringent YVO4 crystal[J]. J. Cryst. Growth, 2003, 249(1):176-178.
HAUMESSER P H, GAUME R. Spectroscopic and crystal-field analysis of new Yb-doped laser materials[J]. J. Phys.:Condens. Matter,
2001, 13(23):5427-5450.
XU J, ZHENG L H, YANG K J, et al.. Growth and efficient tunable laser operation of Tm:Sc2SiO5 crystal[C]. In Lasers Sources and Related Photonic Devices, San Diego, 2012:paper IW3D.1.
MATEOS X, PETROV V, LIU J H, et al.. Efficient 2-m continuous-wave laser oscillation of Tm3+:KLu(WO4)2[J]. IEEE J. Quant. Electron., 2006, 42(10):1008-1015.
JAMBUNATHAN V, MATEOS X, PUJOL M C, et al.. Diode-pumped Ho-doped KLu(WO4)2 laser at 2.08m[J]. Appl. Phys. Express, 2011, 4(7):532-542.
LAGATSKY A A, FUSARI F, KURILCHIK S V, et al.. Optical spectroscopy and efficient continuous-wave operation near 2m for a Tm, Ho:KYW laser crystal[J]. Appl. Phys. B, 2009, 97(2):321-326.
MATEOS X, JAMBUNATHAN V, PUJOL M C, et al.. CW lasing of Ho in KLu(WO4)2 in-band pumped by a diode-pumped Tm:KLu(WO4)2 laser[J]. Opt. Express, 2010, 18(20):20793.
0
Views
88
下载量
4
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution