LIU Chun-yang, JU Ying, SONG De etc. Guided Modes in Thin Layer Waveguide Induced by Photorefractive Surface Waves[J]. Chinese Journal of Luminescence, 2018,39(11): 1572-1578
LIU Chun-yang, JU Ying, SONG De etc. Guided Modes in Thin Layer Waveguide Induced by Photorefractive Surface Waves[J]. Chinese Journal of Luminescence, 2018,39(11): 1572-1578 DOI: 10.3788/fgxb20183911.1572.
Guided Modes in Thin Layer Waveguide Induced by Photorefractive Surface Waves
Formation and property of guided modes were studied numerically in thin layer waveguide induced by photorefractive surface waves under diffusion nonlinearity. By employing the split-step Fourier method
the propagation of the guided modes were simulated. By solving the guided modes
the guiding properties of photorefractive surface wave-induced thin layer waveguide were analyzed. The orders and propagation waveform of guided modes can be controlled by adjusting the values of propagation constant and guiding parameter. With the increase of orders
the profile of the guided modes becomes more and more asymmetric. The peak amplitude of the guided modes increases monotonically with the guiding parameter. The energy of the guided modes is mainly concentrated in the thin waveguide near the -
c
axis of photorefractive crystal and becomes from small to large with an increase of the propagation constant. The stability properties of the guided modes are investigated numerically and it is shown that they can be stable.
关键词
Keywords
references
凌振芳, 郭儒, 刘思敏, 等. 光折变效应和带输运模型[J]. 物理, 1991, 20(11):669-672. LING Z F, GUO R, LIU S M, et al.. Photorefractive effect and band transport model[J]. Physics, 20(11):669-672. (in Chinese)
DUREE G, SHULTZ J L, SALAMO G J, et al.. Observation of self-trapping of an optical beam due to the photorefractive effect[J]. Phys. Rev. Lett., 1993, 71(4):533-536.
SHIH M, CHEN Z G, MITCHELL M, et al.. Waveguides induced by photorefractive screening solitons[J]. J. Opt. Soc. Am. B, 1997, 14(11):3091-3101.
QUIRINO G S, MONDRAGON J J, STEPANOV S, et al.. Guided modes in a dielectric slab with diffusion-type photorefractive nonlinearity[J]. J. Opt. Soc. Am. B, 1996, 13(11):2530-2535.
CHEN Z, MARTIN H G. Waveguides and waveguide arrays formed by incoherent light in photorefractive materials[J]. Opt. Mater., 2003, 23(1):235-241.
LU K Q, ZHAO W, YANG Y L, et al.. Soliton-induced waveguides in photorefractive photovoltaic materials[J]. J. Modern Opt., 2006, 53(15):2137-2151.
张美志, 卢克清, 程光华, 等. 部分空间非相干暗光伏孤子诱导一维波导研究[J]. 光子学报, 2008, 37(10):1942-1946. ZHANG M Z, LU K Q, CHENG G H, et al.. One-dimensional waveguides induced by photovoltaic dark spatial solitons of partially incoherent light[J]. Acta Photon. Sinica, 2008, 37(10):1942-1946. (in Chinese)
张鹏, 刘骞, 任煜轩, 等. SBN:Cr晶体中孤子诱导的实时平面光波导及其导光特性分析[J]. 光子学报, 2008, 37(5):935-939. ZHANG P, LIU Q, REN Y X, et al.. Soliton-induced real-time planar waveguide and its guiding property in SBN:Cr crystal[J]. Acta Photon. Sinica, 2008, 37(5):935-939. (in Chinese)
CRONINGOLOMB M. Photorefractive surface waves[J]. Opt. Lett., 1995, 20(20):2075-2077.
LIU S M, ZHANG G Q, SUN Q, et al.. Waveguides written and stored by photovoltaic dark spatial solitons in LiNbO3:Fe crystals[J]. Chin. Phys. Lett., 1996, 13(10):737-740.
KANG H Z, ZHANG T H, MA H H, et al.. Giant enhancement of surface second-harmonic generation using photorefractive surface waves with diffusion and drift nonlinearities[J]. Opt. Lett., 2010, 35(10):1605-1607.
QUIRINO G S, SANCHEZMONDRAGON J J, STEPANOV S, et al.. Nonlinear surface optical waves in photorefractive crystals with a diffusion mechanism of nonlinearity[J]. Phys. Rev. A, 1995, 51(2):1571-1577.
ALESHKEVICH V A, KARTASHOV Y V, EGOROV A A, et al.. Stability and formation of localized surface waves at the dielectric-photorefractive crystal boundary[J]. Phys. Rev. E, 2001, 64(5):056610.
ZHANG T H, REN X K, WANG B, et al.. Surface waves with photorefractive nonlinearity[J]. Phys. Rev. A, 2007, 76(1):013827.
FUJIHARA T, SASSA T, MUTO T, et al.. Surface waves in photorefractive polymer films[J]. Opt. Express, 2009, 17(16):14150-14155.
USIEVICH B A, NURLIGAREEV D K, SYCHUGOY V A, et al.. Nonlinear surface waves on the boundary of a photorefractive crystal[J]. Quant. Electron., 2010, 40(5):437-440.
CHEN W J, LU K Q, HUI J L, et al.. Localized surface waves at the interface between linear dielectric and biased centrosymmetric photorefractive crystals[J]. Opt. Express, 2013, 21(13):15595.
LU K Q, WANG C X, LU P Y, et al.. Generation of localized surface waves at the interface between a linear dielectric and a biased photovoltaic-photorefractive crystal[J]. Opt. Commun., 2013, 295(10):203-207.
HUI J L, LU K Q, CHEN W J, et al.. Optical surface waves supported by the interface between a metal and a biased centrosymmetric photorefractive crystal[J]. Opt. Commun., 2014, 332(4):327-331.
陈卫军, 卢克清, 惠娟利, 等. LiNbO3晶体界面非线性表面波的研究[J]. 物理学报, 2015, 64(1):014204. CHEN W J, LU K Q, HUI J L, et al.. Study on nonlinear surface waves along the boundary of LiNbO3 crystals[J]. Acta Phys. Sinica, 2015, 64(1):014204. (in Chinese)
USIEVICH B A, NURLIGAREEV D K H, SYCHUGOV, et al.. Composite waveguide on a photorefractive crystal[J]. Quant. Electron., 2011, 41(10):924-928.
FUJIHARA T, UMEGAKI S, HARA M, et al.. Formation speed and formation mechanism of self-written surface wave-based waveguides in photorefractive polymers[J]. Opt. Mater. Express, 2012, 2(6):849-855.
QI P F, HU Z J, HAN R, et al.. Apodized waveguide arrays induced by photorefractive nonlinear surface waves[J]. Opt. Express, 2015, 23(24):31144-31149.
QI P F, FENG T R, WANG S N, et al.. Photorefractive surface nonlinearly chirped waveguide arrays[J]. Phys. Rev. A, 2016, 93(5):053822.
QI P F, HAN R, HU Z J, et al.. Regulation of photorefractive surface apodized and chirped waveguide arrays[J]. J. Opt. Soc. Am. B, 2016, 33(9):1933-1939.