浏览全部资源
扫码关注微信
云南师范大学 云南省农村能源工程重点实验室, 云南省光电信息技术重点实验室,云南 昆明,650500
Received:08 February 2018,
Revised:10 April 2018,
Published Online:09 May 2018,
Published:05 November 2018
移动端阅览
徐信, 王书荣, 陆熠磊等. 磁控溅射Sn和CuS靶制备铜锡硫薄膜电池[J]. 发光学报, 2018,39(11): 1557-1564
XU Xin, WANG Shu-rong, LU Yi-lei etc. Fabrication of Cu<sub>2</sub>SnS<sub>3</sub> Thin Films Solar Cells by Magnetron Sputtering Sn and CuS Targets[J]. Chinese Journal of Luminescence, 2018,39(11): 1557-1564
徐信, 王书荣, 陆熠磊等. 磁控溅射Sn和CuS靶制备铜锡硫薄膜电池[J]. 发光学报, 2018,39(11): 1557-1564 DOI: 10.3788/fgxb20183911.1557.
XU Xin, WANG Shu-rong, LU Yi-lei etc. Fabrication of Cu<sub>2</sub>SnS<sub>3</sub> Thin Films Solar Cells by Magnetron Sputtering Sn and CuS Targets[J]. Chinese Journal of Luminescence, 2018,39(11): 1557-1564 DOI: 10.3788/fgxb20183911.1557.
为了验证采用金属单质靶与硫属化合物靶混合溅射法制备Cu
2
SnS
3
(CTS)薄膜及太阳电池的可行性,在镀钼的钠钙玻璃上通过磁控溅射Sn和CuS靶制备CTS预制层后,再经过低温合金化和高温硫化过程制备CTS薄膜,研究了硫化过程中不同升温速率对CTS薄膜表面形貌的影响。采用X射线衍射仪(XRD)、扫描电子显微镜(SEM)及配属的能谱仪(EDS)、拉曼散射(Raman)对薄膜的晶体结构、表面和截面形貌、薄膜组分、物相进行表征分析,利用紫外-可见光光度计和霍尔测试系统表征了薄膜的光电特性。在硫化升温速率为35℃/min的条件下,获得了表面致密平整且纯相的单斜结构CTS薄膜,并用CTS薄膜制备了太阳电池。随后在标准测试条件(AM1.5,100 mW/cm
2
,300 K)下采用KEITHLEY的2400数字源表测试了电池的
I-V
特性,其开路电压为299 mV,短路电流密度为16.6 mA/cm
2
,光电转换效率为1.18%。结果表明,采用磁控溅射金属单质靶Sn与硫属化合物靶CuS有望制备出高效CTS薄膜太阳电池。
In order to verify the feasibility of preparing Cu
2
SnS
3
(CTS) thin films and solar cells by hybrid sputtering single metal target and chalcogenide targets
CTS precursors were deposited on Mo-coated SLG substrate by magnetron sputtering Sn and CuS targets. Then
the precursors were alloyed at low temperature and sulfurized at high temperature sequentially to form CTS films. Meanwhile
the effects of different heating rate during sulfurization on CTS morphology were investigated. Structural
morphological
compositional and phases features of the films were investigated using X-ray diffraction(XRD)
scanning electron microscope(SEM) equipped with an energy dispersive X-ray spectroscopy(EDS)
Raman spectroscopy(Raman)
respectively. Meanwhile
the optical-electrical properties of the films were characterized by UV-Vis-INR and Hall measurement system. Finally
monoclinic structure of CTS thin film with pure phase
smooth and compact surface was obtained under a condition of heating rate of 35℃/min during sulfurization process. Then
the current-voltage (
I-V
) of the solar cells was carried out under the standard test conditions(AM1.5
100 mW/cm
2
300 K) using a Keithley 2400 sourcemeter. The conversion efficiency of the fabricated CTS film solar cells was 1.18% with an open-circuit voltage of 299 mV
a short-circuit current density of 16.6 mA/cm
2
. In conclusion
it is expected to fabricate high efficient CTS thin film solar cells by magnetron sputtering single metal target Sn and chalcogenide targets CuS.
JACKSON P, HARISKOS D, LOTTER E, et al.. New world record efficiency for Cu(In, Ga)Se2 thin-film solar cells beyond 20%[J]. Prog. Photovolt., 2011, 19(7):894-897.
SIEBENTRITT S, SCHORR S. Kesterites-a challenging material for solar cells[J]. Prog. Photovolt., 2012, 20(5):512-519.
AGAWANE G L, SHIN S W, VANALAKAR S A, et al.. Next generation promising Cu2(ZnxFe1-x)SnS4 photovoltaic absorber material prepared by pulsed laser deposition technique[J]. Mater. Lett., 2014, 37:147-149.
CHANG X, WADA H, SATO A, et al.. Synthesis, electrical conductivity, and crystal structure of Cu4Sn7S16 and structure refinement of Cu2SnS3[J]. Solid State Chem., 1998, 139(1):144-148.
AIHARA N, ARAKI H, TAKEUCHI A, et al.. Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu-Sn precursors for solar cells[J]. Phys. Stat. Sol., 2013, 10(7-8):1086-1092.
KANAI A, TOYONAGA K, CHINO K, et al.. Fabrication of Cu2SnS3 thin-film solar cells with power conversion efficiency of over 4%[J]. Jpn. J. Appl. Phys., 2015, 54(8):KC06.
NAKASHIMA M, FUJIMOTO J, YAMAGUCHI T, et al.. Cu2SnS3 thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor[J]. Appl. Phys. Express, 2015, 8(4):042303.
KIM K M, TAMPO H, SHIBATA H, et al.. Growth and characterization of coevaporated Cu2SnSe3 thin films for photovoltaic applications[J]. Thin Solid Films, 2013, 536(5):111-114.
CHALAPATHI U, JAYASREE Y, UTHANNA S, et al.. Effect of annealing on the structural, microstructural and optical properties of co-evaporated Cu2SnS3 thin films[J]. Vacuum, 2015, 117:121-126.
DONG Y C, HE J, LI X R, et al.. Synthesis and optimized sulfurization time of Cu2SnS3 thin films obtained from stacked metallic precursors for solar cell application[J]. Mater. Lett., 2015, 160(1):468-471.
ZHANG H T, XIE M, ZHANG S, et al.. Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors[J]. J. Alloys Compd., 2014, 602(10):199-203.
BODEUX R, LEGUAY J, DELBOS S. Influence of composition and annealing on the characteristics of Cu2SnS3 thin films grown by cosputtering at room temperature[J]. Thin Solid Films, 2015, 582(1/2):229-232.
ZHAO P Y, CHENG S Y. Influence of sulfurization temperature on photoelectric properties Cu2SnS3 thin films deposited by magnetron sputtering[J]. Adv. Mater. Sci. Eng., 2013, 8(10):346-349.
BOUAZIZ M, BOUBAKER K, AMLOUK M, et al.. Effect of Cu/Sn concentration ratio on the phase equilibrium-related properties of Cu-Sn-S sprayed materials[J]. J. Phase Equilib. Diffus., 2010, 31(6):498-503.
CAPORALI S, TOLSTOGOUZOV A, ORLANDO M N D, et al.. Sn-deficiency in the electrodeposited ternary CuxSnySz thin films by ECALE[J]. Solar Energy Mater. Solar Cells, 2015, 138:9-16.
TIWARI D, CHAUDHURI T K, SHRIPATHI T, et al.. Non-toxic, earth-abundant 2% efficient Cu2SnS3 solar cell based on tetragonal films direct-coated from single metal-organic precursor solution[J]. Solar Energy Mater. Solar Cells, 2013, 113(2):165-170.
YEON H J, BHASKAR C M. Single elementary target-sputtered Cu2ZnSnS4 film solar cells[J]. Solar Energy Mater. Solar Cells, 2015, 132(1):136-141.
KIM I Y, JU Y L, GHORPADE U V, et al.. Influence of annealing temperature on the properties and solar cell performance of Cu2SnS3, (CTS) thin film prepared using sputtering method[J]. J. Alloys Compd., 2016, 688:12-17.
FERNANDES P A, SALOM P M P, CUNHA A F D. A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors[J]. J. Phys. D:Appl. Phys., 2010, 43(43):1347-1352.
DONG Y, HE J, LI X, et al.. Synthesis and optimized sulfurization time of Cu2SnS3, thin films obtained from stacked metallic precursors for solar cell application[J]. Mater. Lett., 2015, 160:468-471.
CHIERCHIA R, PIGNA F, VALENTINI M, et al.. Cu2SnS3 based solar cell with 3% efficiency[J]. Phys. Stat. Sol., 2016, 13(1):35-39.
KANAI A, ARAKI H, TAKEUCHI A, et al.. Annealing temperature dependence of photovoltaic properties of solar cells containing Cu2SnS3 thin films produced by co-evaporation[J]. Phys. Stat. Sol. B, 2015, 6(252):1239-1243.
UMEHARA M, TAKEDA Y, MOTOHIRO T, et al.. Cu2Sn1-xGexS3 (x=0.17) thin-film solar cells with high conversion efficiency of 6.0%[J]. Appl. Phys. Express, 2013, 6(4):532-538.
GUAN H, SHEN H L, GAO C, et al.. The influence of annealing atmosphere on the phase formation of Cu-Sn-S ternary compound by SILAR method[J]. J. Mater. Sci.-Mater. Electron., 2013, 24(9):3195-3198.
FERNANDES P A, SALOM P M P, CUNHA A F D. Study of polycrystalline Cu2ZnSnS4 films by Raman scattering[J]. J. Alloys Compd., 2011, 509(28):7600-7606.
BERG D M, DJEMOUR R, GUTAY L, et al.. Raman analysis of monoclinic Cu2SnS3 thin films[J]. Appl. Phys. Lett., 2012, 100(19):192103-1-4.
CHALAPATHI U, JAYASREE Y, UTHANNA S, et al.. Effect of annealing temperature on the properties of spray deposited Cu2SnS3, thin films[J]. Phys. Stat. Sol.:Appl. Mater., 2013, 210(11):2384-2390.
GHOBADI N. Band gap determination using absorption spectrum fitting procedure[J]. Int. Nano Lett., 2013, 3(1):1-4.
SHAH N M, RAY J R, KHERAJ V A, et al.. Structural, optical, and electrical properties of flash-evaporated copper indium diselenide thin films[J]. J. Mater. Sci., 2009, 44(1):316-322.
ROBLES V, TRIGO J F, GUILLN C, et al.. Copper tin sulfide (CTS) absorber thin films obtained by co-evaporation:Influence of the ratio Cu/Sn[J]. J. Alloys Compd., 2015, 642:40-44.
BOUAZIZ M, OUERFELLI J, SRIVASTAVA S K, et al.. Growth of Cu2SnS3, thin films by solid reaction under sulphur atmosphere[J]. Vacuum, 2011, 85(8):783-786.
GUO Y X, CHENG W J, JIANG J C. The effect of substrate temperature, Cu/Sn ratio and post-annealing on the phase-change and properties of Cu2SnS3 film deposited by ultrasonic spray pyrolysis[J]. J. Mater. Sci.-Mater. Electron., 2016, 27(5):4636-4646.
CROVETTO A, CHEN R, ETTLINGER R B, et al.. Dielectric function and double absorption onset of monoclinic Cu2SnS3:Origin of experimental features explained by first-principles calculations[J]. Solar Energy Mater. Solar Cells, 2016, 154:121-129.
DONG H, SCHNABEL T, AHLSWEDE E, et al.. Polyol-mediated synthesis of Cu2ZnSn(S,Se)4, kesterite nanoparticles and their use in thin-film solar cells[J]. Solid State Sci., 2014, 29(19):52-57.
MKAWI E M, IBRAHIM K, ALI M K M, et al.. Influence of triangle wave pulse on the properties of Cu2ZnSnS4 thin films prepared by single step electrodeposition[J]. Solar Energy Mater. Solar Cells, 2014, 130:91-98.
KUKU T A, FAKOLUJO O A. Photovoltaic characteristics of thin films of Cu2SnS3[J]. Int. Sympos./Innsbruck, 1986, 16(s1-3):199-204.
BERG D M, DJEMOUR R, GVTAY L, et al.. Thin film solar cells based on the ternary compound Cu2SnS3[J]. Thin Solid Films, 2012, 520(19):6291-6294.
KOIKE J, CHINO K, AIHARA N, et al.. Cu2SnS3 thin-film solar cells from electroplated precursors[J]. Jpn. J. Appl. Phys., 2012, 51(10):34-37.
0
Views
202
下载量
0
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution