浏览全部资源
扫码关注微信
1. 大连工业大学纺织与材料工程学院,辽宁 大连,116034
2. 大连工业大学 信息科学与工程学院,辽宁 大连,116034
Received:30 January 2018,
Revised:10 April 2018,
Published Online:09 May 2018,
Published:05 November 2018
移动端阅览
杨佳心, 赵昕, 张竞辉等. 热离子交换型铝锗酸盐波导玻璃中钬离子的1.2μm近红外荧光发射[J]. 发光学报, 2018,39(11): 1519-1526
YANG Jia-xin, ZHAO Xin, ZHANG Jing-hui etc. 1.2μm Near Infrared Fluorescence Emission of Holmium Ions in Thermal Ion-exchanged Aluminum Germanate Waveguide Glasses[J]. Chinese Journal of Luminescence, 2018,39(11): 1519-1526
杨佳心, 赵昕, 张竞辉等. 热离子交换型铝锗酸盐波导玻璃中钬离子的1.2μm近红外荧光发射[J]. 发光学报, 2018,39(11): 1519-1526 DOI: 10.3788/fgxb20183911.1519.
YANG Jia-xin, ZHAO Xin, ZHANG Jing-hui etc. 1.2μm Near Infrared Fluorescence Emission of Holmium Ions in Thermal Ion-exchanged Aluminum Germanate Waveguide Glasses[J]. Chinese Journal of Luminescence, 2018,39(11): 1519-1526 DOI: 10.3788/fgxb20183911.1519.
采用高温熔融法制备了适用于钾钠离子交换波导的钬离子掺杂铝锗酸盐玻璃,并对热离子交换玻璃样品的波导折射率分布和红外光谱特性进行了表征。实验结果表明,在390℃的KNO
3
熔盐中热离子交换4 h时,波导玻璃折射率最大改变量为0.006 9,K
+
-Na
+
热离子交换有效扩散深度为7.802 m,有效扩散系数达0.063m
2
/min。K
+
-Na
+
离子交换有效扩散系数比磷酸盐玻璃低,与MP19硅酸盐玻璃相当,但明显高于BK7玻璃和硼硅酸盐玻璃,其热离子交换过程易于控制。在644 nm泵浦光下可观察到Ho
3+
归属于
5
I
6
5
I
8
的1.196m近红外有效发射,最大受激发射截面为2.3010
-21
cm
2
。当Ho
3+
在
5
I
6
能级的分数因子超过0.6时,增益截面达10
-21
cm
2
量级以上。有效的近红外荧光发射和稳定的波导性能表明钬掺杂铝锗酸盐玻璃是~1.2 m波导激光器潜在的增益介质。
Ho
3+
doped aluminum germanate glasses adapting for K
+
-Na
+
ion-exchanged waveguide were fabricated by high temperature melting technique. The thermal ion-exchanged waveguide refractive index profile and infrared spectral characteristic of the glasses were measured. These experimental results reveal that the maximum change of refractive index in waveguide glasses is 0.006 9 when Ho
3+
doped aluminum germanate glasses are immersed in KNO
3
molten salt at 390℃ for 4 h. Effective diffusion depth and coefficient of K
+
-Na
+
thermal ion exchange are 7.802 m and 0.063 m
2
/min
respectively. K
+
-Na
+
effective diffusion coefficient in aluminum germanate glass is lower than that in phosphate glass and approximately equals to that in MP19 silicate glass
but significantly higher than those in the BK7 glass and borosilicate glass
which indicates the thermal ion-exchanged process can be controlled easily. Effective 1.2 m near infrared emission belonging to
5
I
6
5
I
8
transition could be observed under 644 nm pump whose the maximum stimulated emission cross-section at 1.196 m is derived to be 2.3010
-21
cm
2
. For the
5
I
6
5
I
8
transition of Ho
3+
the gain cross-section achieves a magnitude of 10
-21
cm
2
when fraction factor
P
exceeds 0.6. Effective near-infrared fluorescence and perfect waveguide performance demonstrate that Ho
3+
doped aluminum germanate glass is a kind of potential gain medium in~1.2 m waveguide laser device.
SKRZYPCZAK U, SEIFERT G, SCHWEIZER S. Highly efficient and broadband upconversion of NIR sunlight with neodymium-doped glass ceramics[J]. Adv. Opt. Mater., 2015, 3(4):541-545.
SESHADRI M, BARBOSA L C, RADHA M. Study on structural, optical and gain properties of 1.2 and 2.0m emission transitions in Ho3+ doped tellurite glasses[J]. J. Non-Cryst. Solid, 2014, 406(1):62-72.
YANG X, ZHANG L, FENG Y, et al.. Mode-Locked Ho3+-doped ZBLAN fiber laser at 1.2m[J]. J. Lightwave Technol., 2016, 34(18):4266-4270.
YUSUPOV A S, GONCHAROV S E, ZALEVSKⅡ I D, et al.. Raman fiber laser for the drug-free photodynamic therapy[J]. Laser Phys., 2010, 20(2):357-359.
WANNER M, AVRAM M, GAGNON D, et al.. Effects of non-invasive 1.210 nm laser exposure on adipose tissue:results of a human pilot study[J]. Laser. Surg. Med., 2009, 41(6):401-407.
FENG Y, HUANG S, SHIRAKAWA A, et al.. 589 nm light source based on Raman fiber laser[J]. Jpn. J. Appl. Phys., 2004, 43(6A):L722-L724.
CHEN M, SHIRAKAWA A, FAN X, et al.. Single-frequency ytterbium doped photonic bandgap fiber amplifier at 1178 nm[J]. Opt. Express, 2012, 20(19):21044.
GEORGIEV D, GAPONTSEV V P, DRONOV A G, et al.. Watts-level frequency doubling of a narrow line linearly polarized Raman fiber laser to 589 nm[J]. Opt. Express, 2005, 13(18):6772-6776.
WANG S, LI C, YAO C, et al.. Ho3+/Yb3+ co-doped TeO2-BaF2-Y2O3 glasses for~1.2m laser applications[J]. Opt. Mater., 2017, 64:421-426.
成煜, 赵修建, 李诗愈, 等. 控制色散的波导结构分析[J].光学与光电技术, 2006, 4(5):43-45. CHEN Y, ZHAO X J, LI S Y, et al.. Optical fiber waveguide for dispersion control[J]. Opt. Optoelectron. Technol., 2006, 4(5):43-45. (in Chinese)
LU Y, CAI M, CAO R, et al.. Ho3+ doped germanate-tellurite glass sensitized by Er3+ and Yb3+ for efficient 2.0m laser material[J]. Mater. Res. Bull., 2016, 84:124-131.
QIANG Q, CHEN W, MA X, et al.. The crystal structure and upconversion properties of Yb3+, Er3+/Ho3+ codoped BaLiF3 microcrystals with different morphologies[J]. Dalton Trans., 2015, 44(13):6242-6248.
SHAN Z, CHEN D, YU Y, et al.. Upconversion luminescence of Ho3+ sensitized by Yb3+ in transparent glass ceramic embedding BaYF5 nanocrystals[J]. Mater. Res. Bull., 2010, 45(8):1017-1020.
FENG Z G, YANG S, XIA H P, et al.. Energy transfer and 2.0m emission in Tm3+/Ho3+co-doped -NaYF4 single crystals[J]. Mater. Res. Bull., 2016, 76:279-283.
ZHANG W, CHEN Q, QIAN Q, et al.. The 1.2 and 2.0m emission from Ho3+ in glass ceramics containing BaF2 nanocrystals[J]. J. Am. Ceram. Soc., 2012, 95(2):663-669.
MING C, SONG F, YU Y, et al.. Impact of Ce4+ ion on microstructure and luminescence character of Ho3+/Yb3+ co-doped ZrO2, nanocrystal[J]. J. Alloys Compd., 2012, 512(1):121-123.
迟光伟, 熊大民, 周大成, 等. 光学碱度对铋掺杂玻璃红外宽带发光的影响[J].光子学报, 2008, 37(s1):235-238. CHI G W, XIONG D M, ZHOU D C, et al.. Optical basicity dependence on broadband infrared fluorescence in Bi-doped germanate glasses[J]. Acta Photon. Sinica, 2008, 37(s1):235-238. (in English)
ZHU Y, XU W, LI C, et al.. Broad white light and infrared emission bands in YVO4:Yb3+, Ln3+ (Ln3+=Er3+, Tm3+ or Ho3+)[J]. Appl. Phys. Express, 2012, 5(9):2701.
ZHANG Q, CHEN G, ZHANG G, et al.. Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer[J]. J. Appl. Phys., 2009, 106(11):3546.
LI J, ZHANG J, HAO Z, et al.. Intense Upconversion luminescence of CaSc2O4:Ho3+/Yb3+ from large absorption cross section and energy-transfer rate of Yb3+[J]. ChemPhysChem, 2015, 16(7):1366-1369.
阮威威, 刘志国, 刘成振, 等. Eu3+离子激活荧光粉Ca1.9Eu0.1NaMg2-xZnx(VO4)3 (0 x 1)的发光性质[J].发光学报, 2017, 38(8):995-1002. RUAN W W, LIU Z G, LIU C Z, et al.. Photoluminescence properties of Eu3+-activated Ca1.9Eu0.1NaMg2-xZnx(VO4)3 (0 x 1) phosphor[J]. Chin. J. Lumin., 2017, 38(8):995-1002. (in Chinese)
LI D, LI K, ZHANG L, et al.. Spectroscopic properties and quenching mechanism of 2m emission in Ho3+ doped germanate glasses and fibers[J]. Opt. Mater. Express, 2015, 5(6):1356.
LIU Y F, WANG X B, SUN J, et al.. Thermal field analysis of polymer/silica hybrid waveguide thermo-optic switch[J]. Opt. Commun., 2015, 356:79-83.
ZHANG Y, LI X, KANG X, et al.. Morphology control and multicolor up-conversion luminescence of GdOF:Yb3+/Er3+, Tm3+, Ho3+ nano/submicrocrystals[J]. Phys. Chem. Chem. Phys., 2014, 16(22):10779-10787.
WANG F, CHEN B, PUN E Y B, et al.. Alkaline aluminum phosphate glasses for thermal ion-exchanged optical waveguide[J]. Opt. Mater., 2015, 42:484-490.
CIMINELLI C, D'ORAZIO A, DE S M, et al.. Effects of thermal annealing on the optical characteristics of K+-Na+ waveguides[J]. Appl. Opt., 1998, 37(12):2346-2356.
LI H Y, SHEN L F, PUN E Y B, et al.. Dy3+-doped germanate glasses for waveguide-typed irradiation light sources[J]. J. Alloys Compd., 2015, 646:586-591.
WANG Y D, YANG Z W, MA Y J, et al.. Upconversion emission enhancement mechanisms of Nd3+-sensitized NaYF4:Yb3+, Er3+ nanoparticles using tunable plasmonic Au films:plasmonic-induced excitation, radiative decay rate and energy-transfer enhancement[J]. J. Mater. Chem. C, 2017, 5:1246-1250.
BAI Q, WANG Z, LI P, et al.. Zn2-aGeO4:aRE and Zn2Ge1-aO4:aRE (RE=Ce3+, Eu3+, Tb3+, Dy3+):4f-4f and 5d-4f transition luminescence of rare earth ions under different substitution[J]. RSC Adv., 2016, 6(104):176-181.
WANG Y C, ZHU X S, SHENG C X, et al.. SESAM Q-switched Ho3+-doped ZBLAN fiber laser at 1190 nm[J]. IEEE Photon. Tech. L, 2017, 29(9):743-746.
SUN J C, MI X Y, LEI L J, et al.. Hydrothermal synthesis and photoluminescence properties of Ca9Eu(PO4)7 nanophosphors[J]. Crystengcomm, 2015, 17(41):7888-7895.
KESAVULU C R, KIM H J, LEE S W, et al.. Optical spectroscopy and emission properties of Ho3+-doped gadolinium calcium silicoborate glasses for visible luminescent device applications[J]. J. Non-Cryst. Solids, 2017, 474:50-57.
YUAN J, SHEN S X, CHEN D D, et al.. Efficient 2.0m emission in Nd3+/Ho3+ co-doped tungsten tellurite glasses for a diode-pump 2.0m laser[J]. J. Appl. Phys., 2013, 113(17):897.
PENG B, IZUMITANI T. Optical properties, fluorescence mechanisms and energy transfer in Tm3+, Ho3+ and Tm3+-Ho3+ doped near-infrared laser glasses, sensitized by Yb3+[J]. Opt. Mater., 1995, 4(6):797-810.
ZHANG Q, CHEN G, ZHANG G, et al.. Spectroscopic properties of Ho3+/Yb3+ codoped lanthanum aluminum germanate glasses with efficient energy transfer[J]. J. Appl. Phys., 2009, 106(11):3546.
SPEGHINI A, PERUFFO M, CASARIN M, et al.. Electronic spectroscopy of trivalent lanthanide ions in lead zinc borate glasses[J]. J. Alloys Compd., 2000, s300-301(4):174-179.
RUKMINI E, JAYASANKAR C K. Spectroscopic properties of Ho3+ ions in zinc borosulphate glasses and comparative energy level analyses of Ho3+ ions in various glasses[J]. Opt. Mater., 1995, 4(4):529-546.
SCHWEIZER T, SAMSON B N, HECTOR J R, et al.. Infrared emission from holmium doped gallium lanthanum sulphide glass[J]. Infrared Phys. Tech., 1999, 40(4):329-335.
0
Views
40
下载量
1
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution