ZHAO Yu-wei, WANG Guo-sheng, HAN Chao etc. Thickness Effect on Quantum Transition of The Polaron in An Asymmetric Gaussian Potential Quantum Dot Within An Electric Field[J]. Chinese Journal of Luminescence, 2018,39(11): 1513-1518
ZHAO Yu-wei, WANG Guo-sheng, HAN Chao etc. Thickness Effect on Quantum Transition of The Polaron in An Asymmetric Gaussian Potential Quantum Dot Within An Electric Field[J]. Chinese Journal of Luminescence, 2018,39(11): 1513-1518 DOI: 10.3788/fgxb20183911.1513.
Thickness Effect on Quantum Transition of The Polaron in An Asymmetric Gaussian Potential Quantum Dot Within An Electric Field
the eigenvalues and eigenfunctions of the polaron ground state and first exited state in a quantum dot were derived by using the Pekar variational method with the harmonic and Gauss potentials as the transverse and longitudinal confinement potentials
respectively. Based on above two states
a two-level system was constructed. Then
the polaron quantum transition affected by an electric field was discussed in terms of the two-level system theory. The results indicate that the Gauss potential reflects the real confining potential more accurately than the parabolic potential; the influence of the thickness of the quantum dot on the transition probability
Q
of the polaron is interesting and significant
and must not be ignore; the ground and the first excited states' energies and the corresponding transition probability of the polaron are influenced significantly by some physical quantities
such as the strength
of the electron-phonon coupling
strength
F
of the electric field
barrier
V
0
and confinement range
L
of the asymmetric Gauss potential
suggesting the transport and optical properties of the quantum dot can be manipulated further though those physical quantities.
关键词
Keywords
references
YANG S, DOU X M, YU Y,
et al.. Single-photon emission from gaas quantum dots embedded in nanowires[J]. Chin. Phys. Lett., 2015, 32(7):077804-1-4.
XUE Y Z, CHEN Z S, NI H Q, et al.. Resonantly driven exciton Rabi oscillation in single quantum dots emitting at 1300 nm[J]. Chin. Phys. B, 2017, 26(8):084202-084205.
LI B X, ZHENG J, CHI F. Rectification effect of the heat generation by electric current in a quantum dot molecular[J]. Chin. Phys. Lett., 2014, 31(5):057302-1-5.
FENG Z Y, YAN Z W. Polaron effect on the optical rectification in spherical quantum dots with electric field[J]. Chin. Phys. B, 2016, 25(10):107804-1-6.
LI W P, XIAO J L, YIN J W,et al.. The energy levels of a two-electron two-dimensional parabolic quantum dot[J]. Chin. Phys. B, 2010, 19(4):047102-1-5.
CHEN Y J, XIAO J L.The temperature effects on the parabolic quantum dot qubit in the electric field[J]. J. Low Temp. Phys., 2013, 170:60-67.
BAI X F, XIN W, YIN H W,et al.. The properties of the ground state of the frhlich bipolaron with rashba spin-orbit coupling in a quantum dot[J]. Int. J. Theor. Phys., 2017, 56:1673-1684.
SUN Y, DING Z H, XIAO J L. Effects of temperature and magnetic field on the coherence time of a RbCl parabolic quantum dot qubit[J]. J. Electron. Mater., 2017, 46(1):439-442.
谷娟, 梁九卿. 施主中心量子点能谱分析[J]. 物理学报, 2005, 54(11):5335-5338. GU J, LIANG J J. Energy spectrum analysis of donor-center quantum dot[J]. Acta Phys. Sinica, 2005, 54(11):5335-5338. (in Chinese)
FOTUE A J, KENFACK S C, TIOTSOP M, et al.. Temperature, impurity and electromagnetic field effects on the transition of a two-level system in a triangular potential[J]. Eur. Phys. J. Plus, 2016, 131:75-81.
JACAK L, HAWRYLAK P, WOJS A. Quantum Dots[M]. Berlin:Springer, 1998.
ADAMOWSKI J, SOBKOWICZ M, SZAFRAN B,et al.. Electron pair in a Gaussian confining potential[J]. Phys. Rev. B, 2000, 62:4234-4237.
XIE W F. Two interacting electrons in a Gaussian confining potential quantum dot[J]. Solid State Commun., 2003, 127(5):401-405.
HAI G Q, PEETERS F M, DEVREESE J T. Polaron-cyclotron-resonance spectrum resulting from interface-and slab-phonon modes in a GaAs/AlAs quantum well[J]. Phys. Rev. B, 1993, 47:10358-10362.
LIANG S D, CHEN C Y, JIANG S C, et al.. Size effect on exciton-phonon scattering in quantum wires[J]. Phys. Rev. B, 1996, 53:15459-15463.
XIAO J L.The effect of electric field on RbCl asymmetric Gaussian potential quantum well qubit[J]. Int. J. Theor. Phys., 2016, 55:147-154.
KHORDAD R, GOUDARZI S, BAHRAMIYAN H. Effect of temperature on lifetime and energy states of bound polaron in asymmetrical Gaussian quantum well[J]. Indian J. Phys., 2016, 90(6):659-664.
LEE T D, LOW F M, PINES D. The motion of slow electrons in a crystal[J]. Phys. Rev., 1953, 90:297-302.
YILDIRIM T, ERCELEBI A. The grounds-state description of the optical polaron versus the effective dimensionality in quantum-well-type systems[J]. J. Phys.:Condens. Matter, 1991, 3(10):1271-1278.
EERDUNCHAOLU, XIAO J L. Effects of lattice vibration on the properties of the strong-coupling polaron in a quantum well[J]. J. Phys. Soc. Jpn., 2007, 76(4):044702-1-7.