AN Xi-tao, WANG Yue, MU Jia-jia etc. Controllable Synthesis and Surface-enhanced Upconversion Luminescence of Ultra-thin Gold Shell Coated NaYF<sub>4</sub>:Yb,Er@SiO<sub>2</sub> Nanostructures[J]. Chinese Journal of Luminescence, 2018,39(11): 1505-1512
AN Xi-tao, WANG Yue, MU Jia-jia etc. Controllable Synthesis and Surface-enhanced Upconversion Luminescence of Ultra-thin Gold Shell Coated NaYF<sub>4</sub>:Yb,Er@SiO<sub>2</sub> Nanostructures[J]. Chinese Journal of Luminescence, 2018,39(11): 1505-1512 DOI: 10.3788/fgxb20183911.1505.
Controllable Synthesis and Surface-enhanced Upconversion Luminescence of Ultra-thin Gold Shell Coated NaYF4:Yb,Er@SiO2 Nanostructures
reduction method was successfully used to prepare the uniform and ultrathin gold shell-coated NSA nanostructures. The microstructure and composition characterizations such as XRD
TEM
EDX
HRTEM-HAADF
mapping as well as absorption spectra data indicated that the average thicknesses of SiO
2
shell and gold nanoshell are about 5 nm and 2 nm
respectively. Under the excitation of a CW diode laser of 980 nm
the dependence of the upconversion fluorescence intensity of the core-shell structure on the concentration of chloroauric acid was systematically investigated. The steady-state spectral results show that the red and green upconversion luminescence intensities of NS samples are 2.8 times enhanced simultaneously by coating the gold shell. The upconversion lifetime of the red and green emission levels before and after the gold shell cladding is obtained by fitting the fluorescence decay curves. The mechanism of enhanced upconversion fluorescence by the surface plasmons is discussed based on the spectral analysis and FDTD method simulation.
关键词
Keywords
references
CHEN C W, LEE P H, CHAN Y C, et al.. Plasmon-induced hyperthermia:hybrid upconversion NaYF4:Yb/Er and gold nanomarterials for oral cancer photothermal therapy[J]. J. Mater. Chem. B, 2015, 3(42):8293-8302.
DENG W, SUDHEENDRA L, ZHAO J, et al.. Upconversion in NaYF4:Yb, Er nanoparticles amplified by metal nanostructures[J]. Nanotechnology, 2011, 22(32):325604.
DONG B, XU S, SUN J, et al.. Multifunctional NaYF4:Yb3+, Er3+@Ag core/shell nanocomposites:integration of upconversion imaging and photothermal therapy[J]. J. Mater. Chem., 2011, 21(17):6193-6200.
LIU N, QIN W, QIN G, et al.. Highly plasmon-enhanced upconversion emissions from Au@-NaYF4:Yb, Tm hybrid nanostructures[J]. Chem. Commun., 2011, 47(27):7671-7673.
FENG W, SUN L D, YAN C H. Ag nanowires enhanced upconversion emission of NaYF4:Yb, Er nanocrystals via a direct assembly method[J]. Chem. Commun., 2009, 29(29):4393.
AVERITT R D, SARKER D, HALAS N J. Plasmon resonance shifts of Au-coated Au2S nanoshells:insight into multicomponent nanoparticle growth[J]. Phys. Rev. Lett., 2012, 78(22):4217-4220.
OLDENBURG S J, AVERITT R D, WESTCOTT S L, et al.. Nanoengineering of optical resonances[J]. Chem. Phys. Lett., 1998, 288(2-4):243-247.
JIN Y, GAO X. Plasmonic fluorescent quantum dots[J]. Nat. Nanotechnol., 2009, 4(9):571-576.
ZHANG H, LI Y, IVANOV I A, et al.. Plasmonic modulation of the upconversion fluorescence in NaYF4:Yb/Tm hexaplate nanocrystals using gold nanoparticles or nanoshells[J]. Angew. Chem., 2010, 49(16):2865.
LUOSHAN M, BAI L, BU C, et al.. Surface plasmon resonance enhanced multi-shell-modified upconversion NaYF4:Yb3+, Er3+@SiO2@Au@TiO2, crystallites for dye-sensitized solar cells[J]. J. Power Sources, 2016, 307:468-473.
LI L, GREEN K, HALLEN H, et al.. Enhancement of single particle rare earth doped NaYF4:Yb, Er emission with a gold shell[J]. Nanotechnology, 2015, 26(2):20011.
ZHAO P, ZHU Y, YANG X, et al.. Plasmon-enhanced efficient dye-sensitized solar cells using core-shell-structured -NaYF4:Yb, Er@SiO2@Au nanocomposites[J]. J. Mater. Chem. A, 2014, 2:16523-16530.
PRIYAM A, IDRIS N, ZHANG Y. Gold nanoshell coated NaYF4 nanoparticles for simultaneously enhanced upconversion fluorescence and darkfield imaging[J]. J. Mater. Chem., 2011, 22(3):960-965.
涂浪平, 孔祥贵. NaYF4:Yb, Er@SiO2与Au纳米粒子荧光共振能量传递系统的构建与研究[J]. 发光学报, 2013, 34(2):149-153. TU L P, KONG X G. Studies on the constructure based on luminescnece resonant energy transfer between NaYF4:Yb, Er@SiO2 nanostructure as donors and gold nanoparticle as acceptors[J]. Chin. J. Lumin., 2013, 34(2):149-153. (in Chinese)
FUJⅡ M, NAKANO T, IMAKITA K, et al.. Upconversion luminescence of Er and Yb Codoped NaYF4 nanoparticles with metal shells[J]. J. Phys. Chem. C, 2013, 117(2):1113-1120.
HAN S, SAMANTA A, XIE X, et al.. Gold and hairpin DNA functionalization of upconversion nanocrystals for imaging and in vivo drug delivery[J]. Adv. Mater., 2017, 29(18):1700244.
LI C, CHEN T, OCSOY I, et al.. Gold-coated Fe3O4 nanoroses with five unique functions for cancer cell targeting, imaging and therapy[J]. Adv. Funct. Mater., 2014, 24(12):1772-1780.
QIAN L P, ZHOU L H, TOO H P, et al.. Gold decorated NaYF4:Yb, Er/NaYF4/silica (core/shell/shell) upconversion nanoparticles for photothermal destruction of BE(2)-C neuroblastoma cells[J]. J. Nanopart. Res., 2011, 13(2):499-510.
LI D, SHAO Q, DONG Y, et al.. A facile synthesis of small-sized and monodisperse hexagonal NaYF4:Yb3+, Er3+ nanocrystals[J]. Chem. Commun., 2014, 50(97):15316-15318.
GNANASAMMANDHAN M K, IDRIS N M, BANSAL A, et al.. Near-IR photoactivation using mesoporous silica-coated NaYF4:Yb, Er/Tm upconversion nanoparticles[J]. Nat. Protocols, 2016, 11(4):688.
LIU J N, BU W B, SHI J L. Silica coated upconversion nanoparticles:a versatile platform for the development of efficient theranostics[J]. Acc. Chem. Res., 2015, 48(7):1797-1805.
TANG J, CHEN L, LI J, et al.. Selectively enhanced red upconversion luminescence and phase/size manipulation via Fe3+ doping in NaYF4:Yb, Er nanocrystals[J]. Nanoscale, 2015, 7(35):14752-14759.
HAASE M, SCHFER H. Upconverting nanoparticles[J]. Angew. Chem. Int. Ed., 2011, 50(26):5808-5829.