PAN Zai-fa, JIN Ke-ran, YAN Li-ping etc. Enhancement of Near-infrared Afterglow by The Persistent Energy Transfer from SrAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>,Dy<sup>3+</sup> to LiGa<sub>5</sub>O<sub>8</sub>:Cr<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2018,39(11): 1496-1504
PAN Zai-fa, JIN Ke-ran, YAN Li-ping etc. Enhancement of Near-infrared Afterglow by The Persistent Energy Transfer from SrAl<sub>2</sub>O<sub>4</sub>:Eu<sup>2+</sup>,Dy<sup>3+</sup> to LiGa<sub>5</sub>O<sub>8</sub>:Cr<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2018,39(11): 1496-1504 DOI: 10.3788/fgxb20183911.1496.
Enhancement of Near-infrared Afterglow by The Persistent Energy Transfer from SrAl2O4:Eu2+,Dy3+ to LiGa5O8:Cr3+
Near-infrared persistent luminescent materials are catching extensive attention for their distinctive features in bio-imaging application. However
comparison with the excellent afterglow properties of green and blue persistent luminescent materials
the afterglow of near-infrared persistent luminescent material is urgent to be improved. This paper proposed a persistent energy transfer enhancement strategy to improve the near-infrared afterglow of LiGa
5
O
8
:Cr
3+
through the radiative energy transfer from SrAl
2
O
4
:Eu
2+
Dy
3+
to LiGa
5
O
8
:Cr
3+
. In this work
SrAl
2
O
4
:Eu
2+
Dy
3+
and LiGa
5
O
8
:Cr
3+
were synthesized by solid state reaction
and then the afterglow properties were characterized for the composites with various weight ratios. The results show that the near-infrared (718 nm) afterglow decay time of the SrAl
2
O
4
:Eu
2+
Dy
3+
/LiGa
5
O
8
:Cr
3+
composites became longer than pure LiGa
5
O
8
:Cr
3+
under the excitation of 348 nm. Moreover
the afterglow enhancement was different for various weight ratios composites. When the ratio was 1:1
the afterglow at 718 nm of LiGa
5
O
8
:Cr
3+
was strongest
indicating the most efficiency of energy transfer. In addition
the TL peaks belonging to SrAl
2
O
4
:Eu
2+
Dy
3+
were recorded in the TL curve
by monitoring at 718 nm. This is a substantial proof for the persistent energy transfer from SrAl
2
O
4
:Eu
2+
Dy
3+
to LiGa
5
O
8
:Cr
3+
. These results demonstrate the feasibility of the persistent energy transfer between two long afterglow luminescent materials
and provide a potential approach to improve the afterglow properties of near-infrared persistent luminescent materials.
关键词
Keywords
references
WU S, PAN Z, CHEN R, et al.. Long Afterglow Phosphorescent Materials[M]. Berlin:Springer International Publishing, 2017.
CHAE K W, PARK T R, CHEON C I, et al.. Persistent luminescence of SrAl2O4:Eu, Dy thin films on alumina and sapphire substrates[J]. Sci. Adv. Mater., 2018, 10(3):362-366.
CHEN Z, GUO X, GE M. Warm-toned, color-tunable, and highly emissive long lasting phosphorescent composite:PMMA/RECC@SrAl2O4:Eu2+,Dy3+[J]. J. Lumin., 2017, 194:200-207.
LONG J, YUAN X, MA C, et al.. Strongly enhanced luminescence of Sr4Al14O25:Mn4+ phosphor by co-doping B3+ and Na+ ions with red emission for plant growth LEDs[J]. RSC Adv., 2018, 8(3):1469-1476.
PAN L P, LIU S L, ZHANG X L, et al.. Optimization method for blue Sr2MgSi2O7:Eu2+, Dy3+ phosphors produced by microwave synthesis route[J]. J. Alloys Compd., 2017, 737:39-45.
HAI O, JIANG H Y, ZHANG Q, et al.. Effect of cooling rate on the microstructure and luminescence properties of Sr2MgSi2O7:Eu2+,Dy3+ materials[J]. Luminescence, 2017, 32(8):1442-1447.
LUO H, BOS A J J, DORENBOS P. Charge carrier trapping processes in RE2O2S (RE=La, Gd, Y and Lu)[J]. JPCC, 2017, 121(16):8760.
LU F Q, SU J, ZHANG Q Y, et al.. Influence of oxygen vacancy on persistent luminescence in ZnGa2O4:Cr3+ and identification of electron carriers[J]. Opt. Mater. Express, 2017, 7(3):734.
XUE F H, HU Y H, FAN L M, et al.. Cr3+-activated Li5Zn8Al5Ge9O36:a near-infrared long-afterglow phosphor[J]. J. Am. Ceram. Soc., 2017, 100(7):3070-3079.
杨小平, 崔瑞瑞, 张弛, 等. 新型近红外超长余辉材料Zn3Al2Ge2O10:Cr3+的发光性能[J]. 发光学报, 2014, 35(3):300-305. YANG X P, CUI R R, ZHANG C, et al.. Luminescence properties of a novel near-infrared super-long afterglow material Zn3Al2Ge2O10:Cr3+[J]. Chin. J. Lumin., 2014, 35(3):300-305. (in Chinese)
SMET P, AVCI N, POELMAN D. Red persistent luminescence in rare-earthcodoped Ca2SiS4:Eu2+[J]. J. Lumin., 2008, 129(10):1140-1143.
ABE S, UEMATSU K, TODA K, et al.. Luminescent properties of red long persistence phosphors, BaMg2Si2O7:Eu2+,Mn2+[J]. J. Alloys Compd., 2006, 408(3):911-914.
XU S, WANG Z, LI P, et al.. White-emitting phosphor Ba2B2O5:Ce3+, Tb3+, Sm3+:luminescence, energy transfer, and thermal stability[J]. J. Am. Ceram. Soc., 2017, 100:2069-2080.
LIN L, YIN M, SHI C, et al.. Luminescence properties of a new red long-lasting phosphor:Mg2SiO4:Dy3+,Mn2+[J]. Cheminform, 2008, 455(1-2):327-330.
LIANG Y, LIU F, CHEN Y, et al.. Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr3+-doped persistent phosphors[J]. Dalton Trans., 2017, 46(34):11149-11153.
LI Y, LI Y Y, SHARAFUDEEN K, et al.. A strategy for developing near infrared long-persistent phosphors:taking MAlO3:Mn4+,Ge4+ (M=La, Gd) as an example[J]. J. Mater. Chem. C, 2014, 2(11):2019-2027.
LI X, TANG X, WANG Z, et al.. Structural, persistent luminescence properties and trap characteristics of an orthosilicate phosphor:LiGaSiO4:Mn2+[J]. J. Alloys Compd., 2017, 721:512-519.
吴冬妮, 崔瑞瑞, 龚新勇, 等. 新型红色荧光粉NaLa0.7(MoO4)(2-x)(WO4)x:0.3Eu3+的制备及发光性质研究[J]. 发光学报, 2016, 37(3):274-279. WU D N, CUI R R, GONG X Y, et al.. Synthesis and photoluminescence properties of NaLa0.7(MoO4)(2-x)(WO4)x:0.3Eu3+ novel red phosphor[J]. Chin. J. Lumin., 2016, 37(3):274-279. (in Chinese)
CHERMONT Q, CHANAC C, SEGUIN J, et al.. Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(22):9266-9271.
CHEN Z, ZHENG W, HUANG P, et al.. Lanthanide-doped luminescent nano-bioprobes for the detection of tumor markers[J]. Nanoscale, 2015, 7(10):4274-4290.
LI Y, GECEVICIUS M, QIU J. Long persistent phosphors-from fundamentals to applications[J]. Chem. Soc. Rev., 2016, 45(8):2090-2136.
MATSUZAWA T, AOKI Y, TAKEUCHI N, et al.. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+[J]. J. Electrochem. Soc., 1996, 143:2670-2673.
CLERCQ O Q Q D, MARTIN L I D J, KORTHOUT K E, et al.. Probing the local structure of the near-infrared emitting persistent phosphor LiGa5O8:Cr3+[J]. J. Mater. Chem. C, 2017, 5(4):10861-10868.
SHI R, QI M, NING L, et al.. Combined experimental and ab initio study of site preference of Ce3+ in SrAl2O4[J]. JPCC, 2015, 119(33):19326-19332.