浏览全部资源
扫码关注微信
1. Department of Physics, Georgia Southern University, Statesboro GA,USA,30460
2. 东北师范大学 物理学院,吉林 长春,130021
Received:16 August 2018,
Revised:24 September 2018,
Published Online:05 September 2018,
Published:05 November 2018
移动端阅览
刘峰, 杨峰, 杨慧等. 红外波段的长余辉发光[J]. 发光学报, 2018,39(11): 1487-1495
LIU Feng, YANG Feng, YANG Hui etc. Long Persistent Luminescence in The Infrared[J]. Chinese Journal of Luminescence, 2018,39(11): 1487-1495
刘峰, 杨峰, 杨慧等. 红外波段的长余辉发光[J]. 发光学报, 2018,39(11): 1487-1495 DOI: 10.3788/fgxb20183911.1487.
LIU Feng, YANG Feng, YANG Hui etc. Long Persistent Luminescence in The Infrared[J]. Chinese Journal of Luminescence, 2018,39(11): 1487-1495 DOI: 10.3788/fgxb20183911.1487.
红外长余辉技术在生物成像探测及夜视保密探测等领域有着广阔的应用前景。本文结合该领域近期的一些进展,对红外长余辉的定义、发光离子的选择、发光动力学过程以及红外长余辉激发谱学技术等几方面进行了简要阐述。在阐述过程中也着重指出了红外长余辉领域今后的几个可能学术研究方向。
Infrared persistent luminescence technology has promising applications in variety of important fields such as deep-tissue biomedical imaging and night-vision security surveillance. This paper presents a brief review on several key aspects
involving the definition of infrared persistent luminescence for reference
the design and choice of emitting ions
the basic knowledge on luminescence dynamic process
and the excitation spectroscopy for infrared persistent luminescence.
YEN W M, SHIONOYA S, YAMAMOTO H. Phosphor Handbook. New York:CRC Press, 2007.
VAN DEN EECKHOUT K, SMET P F, POELMAN D. Persistent luminescence in Eu2+-doped compounds:a review[J]. Materials, 2010, 3(4):2536-2566.
MURAYAM Y, TAKEUCHI N, AOKI Y, et al.. Phosphorencent phosphor:USA, US5424006A. 1994.
MATSUZAWA T, AOKI Y, TAKEUCHI N, et al.. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+[J]. J. Electrochem. Soc., 1996, 143:2670-2673.
JIA D, LEWIS L A, WANG X J. Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission[J]. Electrochem. Solid-State Lett., 2010, 13(4):J32-J34.
YAN W Z, LIU F, LU Y Y, et al.. Near infrared long-persistent phosphorescence in La3Ga5GeO14:Cr3+ phosphor[J]. Opt. Express, 2010, 18(19):20215.
LU Y Y, LIU F, GU Z J, et al.. Long-lasting near-infrared persistent luminescence from -Ga2O3:Cr3+ nanowire assemblies[J]. J. Lumin., 2011, 131(12):2784-2787.
BESSIōRE A, JACQUART S, PRIOLKAR K, et al.. ZnGa2O4:Cr3+:a new red long-lasting phosphor with high brightness[J]. Opt. Express, 2011, 19(11):10131-10137.
PAN Z W, LU Y Y, LIU F. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates[J]. Nat. Mater., 2012, 11(1):58-63.
ALLIX M, CHENU S, VRON E, et al.. Considerable improvement of long-persistent luminescence in germanium and tin substituted ZnGa2O4[J]. Chem. Mater., 2013, 25(9):1600-1606.
LIU F, YAN W Z, CHUANG Y J, et al.. Photostimulated near-infrared persistent luminescence as a new optical read-out from Cr3+-doped LiGa5O8[J]. Sci. Rep., 2013, 3(3):1554.
ABDUKAYUM A, CHEN J T, ZHAO Q, et al.. Functional near infrared-emitting Cr3+/Pr3+ co-doped zinc gallogermanate persistent luminescent nanoparticles with superlong afterglow for in vivo targeted bioimaging[J]. J. Am. Chem. Soc., 2013, 135(38):14125.
ZHANG Y, UEDA J, TANABE S. Tunable trap depth in Zn(Ga1-xAlx)2O4:Cr,Bi red persistent phosphors:considerations of high-temperature persistent luminescence and photostimulated persistent luminescence[J]. J. Mater. Chem. C, 2013, 1(47):7849-7865.
CHUANG Y J, ZHEN Z P, ZHANG F, et al.. Photostimulable near-infrared persistent luminescent nanoprobes for ultrasensitive and longitudinal deep-tissue bio-imaging[J]. Theranostics, 2014, 4(11):1112-1122.
LI Y, ZHOU S F, LI Y Y, et al.. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn-Ga-Sn-O phosphors for deep and reproducible tissue imaging[J]. J. Mater. Chem. C, 2014, 2(15):2657-2663.
LIU F, LIANG Y J, PAN Z W. Detection of up-converted persistent luminescence in the near infrared emitted by the Zn3Ga2GeO8:Cr3+,Yb3+,Er3+ phosphor[J]. Phys. Rev. Lett., 2014, 113(17):177401.
CHEN D, CHEN Y, LU H, et al.. A bifunctional Cr/Yb/Tm:Ca3Ga2Ge3O12 phosphor with near-infrared long-lasting phosphorescence and upconversion luminescence[J]. Inorg. Chem., 2014, 53(16):8638-8645.
MALDINEY T, BESSIōRE A, SEGUIN J, et al.. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells[J]. Nat. Mater., 2014, 13(4):418-426.
SHI J P, SUN X, LI J, et al.. Multifunctional near infrared-emitting long-persistence luminescent nanoprobes for drug delivery and targeted tumor imaging[J]. Biomaterials, 2015, 37:260-270.
TESTON E, RICHARD S, MALDINEY T, et al.. Non-aqueous sol-gel synthesis of ultra small persistent luminescence nanoparticles for near-infrared in vivo imaging[J]. Chem. Eur. J., 2015, 21(20):7350.
LI Z J, ZHANG Y W, WU X, et al.. Direct aqueous-phase synthesis of sub-10 nm "luminous pearls" with enhanced in vivo renewable near-infrared persistent luminescence[J]. J. Am. Chem. Soc., 2015, 137(16):5304-5307.
YI X, CHEN Z T, YE S, et al.. Multifunctionalities of near-infrared upconversion luminescence, optical temperature sensing and long persistent luminescence in La3Ga5GeO14:Cr3+,Yb3+,Er3+ and their potential coupling[J]. RSC Adv., 2015, 5(61):49680-49687.
SHI J P, SUN M, SUN X, et al.. Near-infrared persistent luminescence hollow mesoporous nanospheres for drug delivery and in vivo renewable imaging[J]. J. Mater. Chem. B, 2016, 4:7845-7851.
JIN Y, HU Y, YUAN L, et al.. Multifunctional near-infrared emitting Cr3+-doped Mg4Ga8Ge2O20 particles with long persistent, photostimulated persistent luminescence and photochromism properties[J]. J. Mater. Chem. C, 2016, 4(27):6614-6625.
WYSZECKI G, STILES W S. Color Science:Concepts and Methods, Quantitative Data and Formulae[M]. 2nd ed. New York:Wiley-Interscience, 2000.
CIE Technical Report 191:2010. Recommended system for mesopic photometry based on visual performance. CIE Central Bureau, 2010.
POELMAN D, AVCI N, SMET P F. Measured luminance and visual appearance of multi-color persistent phosphors[J]. Opt. Express, 2009, 17(1):358-364.
SLINEY D H, WANGEMANN R T, FRANKS J K, et al.. Visual sensitivity of the eye to infrared laser radiation[J]. J. Opt. Soc. Am., 1976, 66(4):339-341.
LYNCH D K, LIVINGSTON W C.Color and Light in Nature[M]. 2nd ed. Cambridge:Cambridge University Press, 2001.
TANABE Y, SUGANO S. On the absorption spectra of complex ions. Ⅱ[J]. J. Phys. Soc. Jpn., 1954, 9(5):766-779.
KNIG E, KREMER S. Ligand Field:Energy Diagrams[M]. New York:Springer US, 1977.
LIU F, LIANG Y J, CHEN Y F, et al.. Divalent nickel-activated gallate-based persistent phosphors in the short-wave infrared[J]. Adv. Opt. Mater., 2016, 4(4):562-566.
DIEKE G H. Spectra and Energy Levels of Rare Earth Ions in Crystals[M]. New York:Wiley-Interscience, 1968.
LIANG Y J, LIU F, CHEN Y F, et al.. New function of Yb3+ ion as an efficient emitter for persistent luminescence in the short-wave infrared[J]. Light:Sci. Appl., 2016, 5:e16124.
LIANG Y J, LIU F, CHEN Y F, et al.. Red/near-infrared/short-wave infrared multi-band persistent luminescence in Pr3+-doped persistent phosphors[J]. Dalton Trans., 2017, 46:11149-11153.
LIANG Y J, LIU F, CHEN Y F, et al.. Extending the applications for lanthanide ions:efficient emitters in short-wave infrared persistent luminescence[J]. J. Mater. Chem. C, 2017, 5:6488-6492.
CHEN R, MCKEEVER S W S. Theory of Thermoluminescence and Related Phenomena[M]. New York:World Scientific, 1997.
RANDALL J T, WILKINS M H F. Phosphorescence and electron traps. I. the study of trap distributions[J]. Proc. Roy. Soc. London., 1940, 184(999):365-389.
GARLICK G F J, GIBSON A F. The electron trap mechanism of luminescence in sulphide and silicate phosphors[J]. Proc. Roy. Soc. London., 1948, A60:574.
YUKIHARA E G, MCKEEVER W S. Optically Stimulated Luminescence:Fundamental and Applications[M]. Yew York:John Wiley & Sons Ltd., 2007.
SCHWEIZER S. Physics and current understanding of X-ray storage phosphors[J]. Phys. Stat. Sol.(a), 2001, 187(2):335-393.
YU X, WANG T, XU X H, et al.. Yellow photo-stimulated long persistent luminescence in strontium silicate phosphor[J]. ECS Solid State Lett., 2014, 3(2):R4-R6.
LIANG Y J, LIU F, CHEN Y F, et al.. Long persistent luminescence in the ultraviolet in Pb2+-doped Sr2MgGe2O7 persistent phosphor[J]. Dalton Trans., 2016, 45(4):1322.
SEISUKE N, MASATO K, YOSHITOMO H, et al.. Conduction band caused by oxygen vacancies in aluminum oxide for resistance random access memory[J]. J. Appl. Phys., 2012, 112:033711.
LIU F, MELTZER R S, LI X F, et al.. New localized/delocalized emitting state of Eu2+ in orange-emitting hexagonal EuAl2O4[J]. Sci. Rep., 2014, 4:7101.
DE CHERMONT Q L M, CHANEAC C, SEGUIN J, et al.. Nanoprobes with near-infrared persistent luminescence for in vivo imaging[J]. Proc. Natl. Acad. Sci. USA, 2007, 104(22):9266-9271.
CHEN Y F, LIU F, LIANG Y J, et al.. A new up-conversion charging concept for effectively charging persistent phosphors using low-energy visible-light laser diodes[J]. J. Mater. Chem. C, 2018, 6:8003.
LIU F, CHEN Y F, LIANG Y J, et al.. Phonon-assisted up-conversion charging in Zn3Ga2GeO8:Cr3+ near-infrared persistent phosphor[J]. Opt. Lett., 2016, 41(5):954-957.
0
Views
303
下载量
2
CSCD
Publicity Resources
Related Articles
Related Author
Related Institution