CHEN Wen-bin, GUO Wen-rui, MOU Wan-ying etc. Comparing of Inkjet Printing <em>Versus</em> Spin Coating for Preparing Fine Structure Hole Transfer and Emitting Layers in OLED Display Construction[J]. Chinese Journal of Luminescence, 2018,39(10): 1451-1457
CHEN Wen-bin, GUO Wen-rui, MOU Wan-ying etc. Comparing of Inkjet Printing <em>Versus</em> Spin Coating for Preparing Fine Structure Hole Transfer and Emitting Layers in OLED Display Construction[J]. Chinese Journal of Luminescence, 2018,39(10): 1451-1457 DOI: 10.3788/fgxb20183910.1451.
Comparing of Inkjet Printing Versus Spin Coating for Preparing Fine Structure Hole Transfer and Emitting Layers in OLED Display Construction
A comparison between the surface properties of inkjet printed and spin coated PEDOT:PSS films was made in consequence of the intriguing distinction after printing emitting layer inks on them. The sizable and hill-like polymer grains were only found on the surface of the inkjet printed PEDOT:PSS film. Further investigation demonstrated the difference in morphology stems from the diverse of wetting properties. The differing effects on film properties between inkjet printing and spin coating were revealed
according to which a finer structure was constructed on inkjet printed PEDOT:PSS film.
关键词
Keywords
references
PARDO D A, JABBOUR G E, PEYGHAMBARIAN N. Application of screen printing in the fabrication of organic light-emitting devices[J]. Adv. Mater., 2000, 12(17):1249-1252.
YU K, YANG C, FU J, et al.. Patterned self-adaptive polymer brushes by "grafting to" approach and microcontact printing[J]. Surf. Sci., 2004, 572(2):490-496.
CHANG S, LIU J, BHARATHAN J, et al.. Multicolor organic light-emitting diodes processed by hybrid inkjet printing[J]. Adv. Mater., 2010, 11(9):734-737.
BHARATHAN J, YANG Y. Polymer electroluminescent devices processed by inkjet printing:Ⅰ. polymer light-emitting logo[J]. Appl. Phys. Lett., 1998, 72(21):2660-2662.
SINGH M, HAVERINEN H M, DHAGAT P, et al.. Inkjet printing-process and its applications[J]. Adv. Mater., 2010, 22(6):673-685.
HEBNER T R, WU C C, MARCY D, et al.. Ink-jet printing of doped polymers for organic light emitting devices[J]. Appl. Phys. Lett., 1998, 72(5):519-521.
XIA Y, FRIEND R H. Nonlithographic patterning through inkjet printing via holes[J]. Appl. Phys. Lett., 2007, 90(25):913.
KIM D H, AHN J H, CHOI W M, et al.. Strechable and foldable silicon integrated circuits[J]. Science, 2008, 320(5875):507-511.
ZENG W, SHU L, LI Q, et al.. Fiber-based wearable electronics:a review of materials, fabrication, devices, and applications[J]. Adv. Mater., 2014, 26(31):5310.
HAMMOCK M L, CHORTOS A, TEE C K, et al.. 25th anniversary article:the evolution of electronic skin (E-skin):a brief history, design considerations, and recent progress[J]. Adv. Mater., 2013, 25(42):5997-6038.
JIANG C B, ZHONG Z, LIU B, et al.. Coffee-ring-free quantum dot thin film using ink-jet printing from a mixed-solvent system on modified ZnO transport layer for light emitting devices[J]. ACS Appl. Mater. Interf., 2016, 8(39):1127-1132.
LIU H, WEI X, TAN W, et al.. Line printing solution-processable small molecules with uniform surface profile via ink-jet printer[J]. J. Colloid Interf. Sci., 2016, 465:106-111.
NIU Q, SHAO Y, XU W, et al.. Full color and monochrome passive-matrix polymer light-emitting diodes flat panel displays made with solution processes[J]. Org. Electron., 2008, 9(1):95-100.
ZHENG H, ZHENG Y, LIU N, et al.. All-solution processed polymer light-emitting diode displays.[J]. Nat. Commun., 2013, 4(3):1971.
XU M, HAN L, DONG S. Facile fabrication of highly efficient g-C3N4/Ag2O heterostructured photocatalysts with enhanced visible-light photocatalytic activity[J]. ACS Appl. Mater. Interf., 2013, 5(23):12533-12540.
YOOK K S, LEE J Y. Small molecule host materials for solution processed phosphorescent organic light-emitting diodes[J]. Adv. Mater., 2014, 26(25):4218-4233.
DEEGAN R D, BAKAJIN O, DUPONT T F. Capillary flow as the cause of ring stains from dried liquids[J]. Nature, 1997, 389(6653):827-829.
ZHANG Z, ZHANG X, XIN Z, et al.. Controlled inkjetting of a conductive pattern of silver nanoparticles based on the coffee-ring effect[J]. Adv. Mater., 2013, 25(46):6714-6718.
EOM D S, CHANG J, SONG Y W, et al.. Coffee-ring structure from dried graphene derivative solutions:a facile one-step fabrication route for all graphene-based transistors[J]. J. Phys. Chem. C, 2014, 118(46):27081-27090.
XING R, WANG S, ZHANG B, et al.. Inkjet printed polystyrene sulfuric acid-doped poly(3,4-ethylenedioxythiophene) (PEDOT) uniform thickness films in confined grooves through decreasing the surface tension of PEDOT inks[J]. RSC Adv., 2017, 7(13):7725-7733.
WILSON P, LEKAKOU C, WATTS J F. A comparative assessment of surface microstructure and electrical conductivity dependence on co-solvent addition in spin coated and inkjet printed poly(3,4-ethylenedioxythiophene):polystyrene sulphonate (PEDOT:PSS)[J]. Org. Electron., 2012, 13(3):409-418.
WILSON P, LEKAKOU C, WATTS J F. In-plane conduction characterisation and charge transport model of DMSO co-doped, inkjet printed poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS)[J]. Org. Electron., 2013, 14(12):3277-3285.
TOKITO S, ⅡJIMA T, SUZURI Y, et al.. Confinement of triplet energy on phosphorescent molecules for highly-efficient organic blue-light-emitting devices[J]. Appl. Phys. Lett., 2003, 83(3):569-571.
LAMANSKY S, DJUROVICH P, MURPHY D, et al.. Highly phosphorescent bis-cyclometalated iridium complexes:synthesis, photophysical characterization, and use in organic light emitting diodes[J]. J. Am. Chem. Soc., 2001, 123(18):4304-4312.
NARDES A M, KEMERINK M, JANSSEN R A J, et al.. Microscopic understanding of the anisotropic conductivity of PEDOT:PSS thin films[J]. Adv. Mater., 2007, 19(9):1196-1200.
WILSON P, LEI C, LEKAKOU C, et al.. Transverse charge transport in inkjet printed poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS)[J]. Org. Electron., 2014, 15(9):2043-2051.