ZHANG Zheng-yi, WANG Chao,. Effect of Si-doping on Barriers on Polarization Electric Field and Its Photoelectric Properties of GaN Based LED[J]. Chinese Journal of Luminescence, 2018,39(10): 1445-1450
ZHANG Zheng-yi, WANG Chao,. Effect of Si-doping on Barriers on Polarization Electric Field and Its Photoelectric Properties of GaN Based LED[J]. Chinese Journal of Luminescence, 2018,39(10): 1445-1450 DOI: 10.3788/fgxb20183910.1445.
Effect of Si-doping on Barriers on Polarization Electric Field and Its Photoelectric Properties of GaN Based LED
Silicon doping in barrier has an important effect on the electric field in InGaN quantum wells and its photoelectric properties of LED devices. Electric field in multiple quantum wells with the different silicon doping concentration in barrier was calculated by 66 KP method. The results show that the electric field intensity in the well/barrier interface becomes larger when the silicon doping concentration in the barrier is above 1e
18
cm
-3
which is mainly attributed to the accumulation of the interface charge in the quantum well. It is found that the total non radiation recombination increases and Auger recombination increases as barrier doping concentration increased
while Shockley-Read-Hall recombination decreases because of the increasing dot traps result in the formation of defect energy levels. The current-voltage curves show that the barrier doping can effectively improve the work voltage of GaN based LED because doped barrier will contribute to improve the transport characteristics of carriers. When silicon doping concentration is 1e
18
cm
-3
the high internal quantum efficiency is obtained
which is mainly attributed to the reduction of interface charge loss in the quantum well due to the appropriate potential barrier doping.
关键词
Keywords
references
YAM F K, HASSAN Z. InGaN:an overview of the growth kinetics, physical properties and emission mechanisms[J]. Superlatt. Microst., 2008, 43(1):1-23.
KOBAYASHI Y, KUMAKURA K, AKASAKA T, et al.. Layered boron nitride as a release layer for mechanical transfer of GaN-based devices[J]. Nature, 2012, 484(7393):223-227.
ZHAO H, LIU G, LI X H, et al.. Growths of staggered InGaN quantum wells light-emitting diodes emitting at 520-525 nm employing graded growth-temperature profile[J]. Appl. Phys. Lett., 2009, 95(6):L74.
LEE Y J, CHEN C H, LEE C J. Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells[J]. IEEE Photonic. Tech. L., 2010, 22(20):1506-1508.
CHANG S J, LAI W C, SU Y K, et al.. InGaN-GaN multiquantum-well blue and green light-emitting diodes[J]. IEEE J. Sel. Top. Quant. Electron., 2002, 8(2):278-283.
RYOU J H, LIMB J, LEE W, et al.. Effect of silicon doping in the quantum-well barriers on the electrical and optical properties of visible green light-emitting diodes[J]. IEEE Photon. Tech. L., 2008, 20(21):1769-1771.
LIN Z, HAO R, LI G, et al.. Effect of Si doping in barriers of InGaN/GaN multiple quantum wells on the performance of green light-emitting diodes[J]. Jpn. J. Appl. Phys., 2015, 54(2):022102.
LI J, GUO Z, LI F, et al.. Performance enhancement of blue light-emitting diodes by using special designed n and p-type doped barriers[J]. Superlatt. Microst., 2015, 85:454-460.
TSAI T L, CHANG C S, CHEN T P, et al.. Effect of barrier thickness and barrier doping on the properties of InGaN/GaN multiple-quantum-well structure light emitting diode[J]. Phys. Stat. Sol.(c), 2010, 278(1):263-266.
WU L W, CHANG S J, WEN T C, et al.. Influence of Si-doping on the characteristics of InGaN-GaN multiple quantum-well blue light emitting diodes[J]. IEEE J. Sel. Top. Quant. Electron., 2010, 38(5):446-450.
PARK E H, KANG D N H, FERGUSON I T, et al.. The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode[J]. Appl. Phys. Lett., 2007, 90(3):2103.
KWON M K, PARK I K, BAEK S H, et al.. Si delta doping in a GaN barrier layer of InGaN/GaN multiquantum well for an efficient ultraviolet light-emitting diode[J]. J. Appl. Phys., 2005, 97(10):48-49.
BERNARDINI F, FIORENTINI V, VANDERBILT D. Spontaneous polarization and piezoelectric constants of Ⅲ-Ⅴ nitrides[J]. Phys. Rev. B, 1997, 56(16):10024-10027.
VURGAFTMAN I, MEYER J R, RAMMOHAN L R. Band parameters for Ⅲ-Ⅴ compound semiconductors and their alloys[J]. J. Appl. Phys., 2001, 89(11):5815-5875.
SHEN Y C, MUELLER G O, WATANABE S, et al.. Auger recombination in InGaN measured by photoluminescence[J]. Appl. Phys. Lett., 2007, 91(14):2-2.
SCHUBERT M F, XU J, DAI Q, et al.. On resonant optical excitation and carrier escape in GaInN/GaN quantum wells[J]. Appl. Phys. Lett., 2009, 94(8):183507.
PARK E H, KANG D N H, FERGUSON I T, et al.. The effect of silicon doping in the selected barrier on the electroluminescence of InGaN/GaN multiquantum well light emitting diode[J]. Appl. Phys. Lett., 2007, 90(3):2103.
DEGUCHI T, SHIKANAI A, TORⅡ K, et al.. Luminescence spectra from InGaN multiquantum wells heavily doped with Si[J]. Appl. Phys. Lett., 1998, 72(25):3329-3331.
LEE Y J, CHEN C H, LEE C J. Reduction in the efficiency-droop effect of InGaN green light-emitting diodes using gradual quantum wells[J]. IEEE Photon. Tech. L., 2010, 22(20):1506-1508.
WANG T, SAEKI H, BAI J, et al.. Effect of silicon doping on the optical and transport properties of InGaN/GaN multiple-quantum-well structures[J]. Appl. Phys. Lett., 2000, 76(13):1737-1739.
DALFORS J, BERGMAN J P, HOLTZ P O, et al.. Optical properties of doped InGaN/GaN multiquantum-well structures[J]. Appl. Phys. Lett., 1999, 74(22):3299-3301.
KAWAGUCHI Y, HUANG C Y, WU Y R, et al.. Influence of polarity on carrier transport in semipolar (2021) and (2021) multiple-quantum-well light-emitting diodes[J]. Appl. Phys. Lett., 2012, 100(23):053502.
KIVISAARI P, OKSANEN J, TULKKI J. Effects of lateral current injection in GaN multi-quantum well light-emitting diodes[J]. J. Appl. Phys., 2012, 111(10):2217-2225.