CHEN Ya-wen, HUANG Hang, WEI Xiong-wei etc. QLEDs with Organic/Inorganic Hybrid Double Electron Transport Layers[J]. Chinese Journal of Luminescence, 2018,39(10): 1439-1444
CHEN Ya-wen, HUANG Hang, WEI Xiong-wei etc. QLEDs with Organic/Inorganic Hybrid Double Electron Transport Layers[J]. Chinese Journal of Luminescence, 2018,39(10): 1439-1444 DOI: 10.3788/fgxb20183910.1439.
QLEDs with Organic/Inorganic Hybrid Double Electron Transport Layers
composed of conventional organic materials used in OLED and ZnO nanoparticles(ZnO NPs) was adoped to improve the green-QLED device performance. The thickness of the organic ETL was adjusted to control the electron injection
therefore balance the electron/hole ratio. The device architecture of the green QLED fabricated in this work was ITO/PEDOT:PSS/TFB/QDs/ZnO NPs/TPBI:Liq/Al
in which the organic ETL was co-evaporated from TPBI and Liq. Compared with the device only having ZnO as the ETL
an additional organic ETL boosted the maximum current efficiency from 11.53 cd/A to 22.77 cd/A
without any significant impact on the turn-on voltage and the electroluminescence spectrum. We propose that the additional organic ETL has helped to suppress excess amounts of electrons being injected into the QD emissive layer
reducing the inefficient recombination (like Auger recombination) current without sacrificing much of the emission output
and eventually improved the device efficiency.
关键词
Keywords
references
COE S, WOO W K, BAWENDI M, et al.. Electroluminescence from single monolayers of nanocrystals in molecular organic devices[J]. Nature, 2002, 420(6917):800-803.
SCHLAMP M C, PENG X G, ALIVISATOS A P. Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer[J]. J. Appl. Phys., 1997, 82(11):5837-5842.
ANIKEEVA P O, HALPERT J E, BAWENDI M G, et al.. Quantum dot light-emitting devices with electroluminescence tunable over the entire visible spectrum[J]. Nano Lett., 2009, 9(7):2532-2536.
SUN Q J, WANG A, LI L S, et al.. Bright, multicoloured light-emitting diodes based on quantum dots[J]. Nat. Photon., 2007,1(12):717-722.
SHEN H B, WANG S, WANG H Z, et al.. Highly efficient blue-green quantum dot light-emitting diodes using stable low-cadmium quaternary-alloy ZnCdSSe/ZnS core/shell nanocrystals[J]. ACS Appl. Mater. Interf., 2013, 5(10):4260-4265.
KIM H M, YUSOFF A R B, KIM T W, et al.. Semi-transparent quantum-dot light emitting diodes with an inverted structure[J]. J. Mater. Chem. C, 2014, 2(12):2259-2265.
COLVIN V L, SCHLAMP M C, ALIVISATOS A P. Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer[J]. Nature, 1994, 370(6488):354-357.
QIAN L, ZHENG Y, XUE J G, et al.. Stable and efficient quantum-dot light-emitting diodes based on solution-processed multiplayer structures[J]. Nat. Photon., 2011, 5(9):543-548.
PAN J Y, CHEN J, HUANG Q Q, et al.. A highly efficient quantum dot light emitting diode via improving the carrier balance by modulating the hole transport[J]. RSC Adv., 2017, 7(69):43366-43372.
JIANG C B, MU L. Full-color quantum dots active matrix display fabricated by ink-jet printing[J]. Sci. China Chem., 2017, 10(60):1349-1355.
YANG Y X, ZHENG Y, CAO W R, et al.. High-efficiency light-emitting devices based on quantum dots with tailored nanostructures[J]. Nat. Photon., 2015, 9(4):259-266.
ZOU Y T, BAN M Y, CUI W, et al.. QLEDs:a general solvent selection strategy for solution processed quantum dots targeting high performance light-emitting diodes[J]. Adv. Funct. Mater., 2017, 27(1):1603325-1-8.
MASHFORD B S, STEVENSON M, POPOVIC Z, et al.. High-efficiency quantum-dot light-emitting devices with enhanced charge injeciton[J]. Nat. Photon., 2013, 7(5):407-412.
LEE K H, LEE J H, KANG H D, et al.. Over 40 cd/A efficient green quantum dot electroluminescent device comprising uniquely large-sized quantum dots[J]. ACS Nano, 2014, 8(5):4893-4901.
马航, 李邓化, 陈雯柏, 等. 电子传输层厚度及阻塞层对量子点发光二极管性能的影响[J]. 发光学报, 2017, 38(1):85-90. MA H, LI D H, CHEN W B, et al.. Influence of thickness of electron transport layer and block layer on the properties of quantum dot light emitting diodes[J]. Chin. J. Lumin., 2017, 38(1):85-90. (in Chinese)
DAI X L, ZHANG Z X, JIN Y Z, et al.. Solution-processed, high-performance light-emitting diodes based on quantum dots[J]. Nature, 2014, 515(7525):96-99.
PAN J Y, CHEN J, HUANG Q Q, et al.. Size tunable ZnO nanoparticles to enhance electron injection in solution processed QLEDs[J]. ACS Photon., 2016, 3(2):215-222.
PAN J Y, CHEN J, HUANG Q Q, et al.. Flexible quantum dot light emitting diodes based on ZnO nanoparticles[J]. RSC Adv., 2015, 5(100):82192-82198.
KIRKWOOD N, SINGH B, MULVANEY P. Enhancing quantum dot LED efficiency by tuning electron mobility in the ZnO electron transport layer[J]. Adv. Mater. Interface, 2016, 3(22):1600868-1-7.
REDECKER M, BRADLEY D D C, INBASEKARAN M, et al.. High mobility hole transport fluorene-Triarylamine copolymers[J]. Adv. Mater., 1999, 11(3):241-246.
TAO Y T, YANG C L, QIN J G. Organic host materials for phosphorescent organic light-emitting diodes[J]. Chem. Soc. Rev., 2011, 40(5):2943-2970.
LIU Y, CHEN S M, LAM J W Y, et al.. Tuning the electronic nature of aggregation-induced emission luminogens with enhanced hole-transporting property[J]. Chem. Mater., 2011, 23(10):2536-2544.
CHO Y J, LEE J Y. Low driving voltage, high quantum efficiency, high power efficiency, and little efficiency roll-off in red, green, and deep-blue phosphorescent organic light-emitting diodes using a high-triplet-energy hole transport material[J]. Adv. Mater., 2011, 23(39):4568-4572.