YANG Fan, WANG Chao, ZHOU Lu etc. Preparation of ZnO Thin Film on Zein by RF Magnetron Sputtering[J]. Chinese Journal of Luminescence, 2018,39(10): 1431-1438
YANG Fan, WANG Chao, ZHOU Lu etc. Preparation of ZnO Thin Film on Zein by RF Magnetron Sputtering[J]. Chinese Journal of Luminescence, 2018,39(10): 1431-1438 DOI: 10.3788/fgxb20183910.1431.
Preparation of ZnO Thin Film on Zein by RF Magnetron Sputtering
ZnO films were deposited on zein by radio frequency(RF) magnetron sputtering technique. We investigated the influences of deposition parameters
such as target-to-substrate distance
Ar/O
2
ratio and sputtering power on the properties of ZnO films. The results show that
c
-axis preferred orientation of ZnO films is obtained at small target-to-substrate distance. We also find that ZnO films deposited on zein is in a state of tensile stress
whereas the film deposited at Ar/(Ar+O
2
) ratio of 0.7 has the lowest tensile stress. The near-band-edge peaks of ZnO films in photoluminescence spectra show blueshifts. We speculate that the blueshifts are caused by the oxygen vacancy and the electrostatic potentials that exist at the grain boundaries. As the sputtering power increases
the deposition rate and the grain size of ZnO films increase
the near-band-edge peak of ZnO film shifts toward the theoretical value gradually.
关键词
Keywords
references
KIM D H, KIM Y S, AMSDEN J, et al.. Silicon electronics on silk as a path to bioresorbable, implantable devices[J]. Appl. Phys. Lett., 2009, 95(13):133701.
ONG K G, WANG J, SINGH R S, et al.. Monitoring of bacteria growth using a wireless, remote query resonant-circuit sensor:application to environmental sensing[J]. Biosens. Bioelectron., 2001, 16(4-5):305-312.
ZHU P, WENG Z Y, LI X, et al.. Biomedical applications of functionalized ZnO nanomaterials:from biosensors to bioimaging[J]. Adv. Mater. Interf., 2016, 3:1500494.
LEE J B, LEE M H, PARK C K, et al.. Effects of lattice mismatches in ZnO/substrate structures on theorientations of ZnO films and characteristics of SAW devices[J]. Thin Solid Films, 2004, 447-448:296-301.
PARAGUAY F D, MIKI-YOSHIDA M, MORALES J, et al.. Influence of Al, In, Cu, Fe and Sn dopants on the response of thin film ZnO gas sensor to ethanol vapour[J]. Thin Solid Films, 2000, 373:137-140.
KADOT M, MIURA T, MINAKAT M, et al.. Piezoelectric and optical properties of ZnO films deposited by an electron-cyclotron-resonance sputtering system[J]. J. Cryst. Growth, 2002, 237-239:523-527.
SHI Z F, XIA X C, YIN W, et al.. Dominant ultraviolet electroluminescence from p-ZnO:As/n-SiC(6H) heterojunction light-emitting diodes[J]. Appl. Phys. Lett., 2012, 100:101112.
SHI Z F, WU B, CAI X P, et al.. Photofacilitated controllable growth of ZnO films using photoassisted metal organic chemical vapor deposition[J]. Cryst. Growth Des. 2012, 12:4417-4424.
SHI Z F, LI Y, ZHANG Y T, et al.. High-efficiency and air-stable perovskite quantum dots light emitting diodes with an all-inorganic heterostructure[J]. Nano Lett., 2017, 17:313-321.
KIM D H, VIVENTI J, AMSDEN J J, et al.. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics[J]. Nat. Mater., 2010(9):511-517.
REYES P I, LI J, DUAN Z Q, et al.. ZnO surface acoustic wave sensors built on zein-coated flexible food packages[J]. Sens. Lett. 2013, 11(3):539-544.
HWANG S W, TAO H, KIM D H, et al.. A physically transient form of silicon electronics, with integrated sensors, actuators and power supply[J]. Science, 2012, 337(6102):1640-1644.
MANNORR M S, TAO H, CLAYTON J D, et al.. Graphene-based wireless bacteria detection on tooth enamel[J]. Nat. Commun., 2012, 3:763.
KIM D H, GHAFFARI R, LUN S, et al.. Electronic sensor and actuator webs for large-area complex geometry cardiac mapping and therapy[J]. P. Natl. Acad. Sci., 2012, 109(49):19910-19915.
DAGDEVIREN C, HWANG S W, SU Y W, et al.. Transient, biocompatible electronics and energy harvesters based on ZnO[J]. Small, 2013, 9(20):3398-3404.
DANG W L, FU Y Q, LUO J K, et al.. Deposition and characterization of sputtered ZnO films[J]. Superlatt. Microst., 2007, 42:89-93.
JEONG S H, KIM J K, LEE B T. Effects of growth conditions on the emission properties of ZnO films prepared on Si(100) by RF magnetron sputtering[J]. J. Phys. D:Appl. Phys., 2003, 36:2017-2020.
ELLMER K. Magnetron sputtering of transparent conductive zinc oxide:relation between the sputtering parameters and the electronic properties[J]. J. Phys. D:Appl. Phys., 2000, 33:R17-R32.
KIM H W, KIM N H. Structural studies of room-temperature RF magnetron sputtered ZnO films under different RF powered conditions[J]. Mat. Sci. Eng. B, 2003, 103:297-302.
祐卫国, 张勇, 李璟, 等. 溅射气氛对RF反应磁控溅射制备ZnO薄膜微结构及光致发光特性的影响[J]. 发光学报, 2010, 31(4):503-508. YOU W G, ZHANG Y, LI J, et al.. Effect of sputtering atmosphere on the structure and optical properties of ZnO thin films by RF reactive magnetron sputtering[J]. Chin. J. Lumin., 2010, 31(4):503-508. (in Chinese)
LIU Y Y, ZANG Y L, WEI G X, et al.. Stress and structural studies of ZnO thin films on polymer substrate under different RF powered conditions[J]. Mater. Lett., 2009, 63:2597-2599.
HONG R J, SHAO J D, HE H B, et al.. Influence of buffer layer thickness on the structure and optical properties of ZnO thin films[J]. Appl. Surf. Sci., 2006, 252:2888-2893.
GAO W, LI Z W. ZnO thin films produced by magnetron sputtering[J]. Ceram. Int., 2004, 30:1155-1159.
LIU H F, CHUA S J, HU G X, et al.. Effects of substrate on the structure and orientation of ZnO thin film grown by RF-magnetron sputtering[J]. J. Appl. Phys., 2007, 102:083529.
KO Y H, KIM M S, YU J S. Controllable electrochemical synthesis of ZnO nanorod arrays on flexible ITO/PET substrate and their structural and optical properties[J]. Appl. Surf. Sci., 2012, 259:99-104.
SRIKANT V, CLARKE D R. Optical absorption edge of ZnO thin films:the effect of substrate[J]. J. Appl. Phys., 1997, 81(9):6357-6364.
LIU H Y, ZENG F, LIN Y S, et al.. Correlation of oxygen vacancy variations to band gap changes in epitaxial ZnO thin films[J]. Appl. Phys. Lett., 2013, 102:181908.
TAN S T, CHEN B J, SUN X W, et al.. Blueshift of optical band gap in ZnO thin films grown by metal-organic chemical-vapor deposition[J]. J. Appl. Phys., 2005, 98:013505.
LI Y F, YAO B, LU Y M, et al.. Characterization of biaxial stress and its effect on optical properties of ZnO thin films[J]. Appl. Phys. Lett., 2007, 91:021915.
SHAN F K, KIM B I, LIU G X, et al.. Blueshift of near band edge emission in Mg doped ZnO thin films and aging[J]. J. Appl. Phys., 2004, 95(9):4772-4776.
VANHEUSDEN K, SEAGER C H, WARREN W L, et al.. Correlation between photoluminescence and oxygen vacancies in ZnO phosphors[J]. Appl. Phys. Lett., 1996, 68(3):403-405.
WANG H, JIANG D S, ZHU J J, et al.. The influence of growth temperature and input V/Ⅲ ratio on the initial nucleation and material properties of InN on GaN by MOCVD[J]. Semicond. Sci. Technol., 2009, 24:055001.