WANG Li-juan, FAN Si-da, ZHANG Liang etc. Effect of Fe<sub>3</sub>O<sub>4</sub> Nanoparticles on P3HT: PCBM Solar Cells[J]. Chinese Journal of Luminescence, 2018,39(10): 1410-1416
WANG Li-juan, FAN Si-da, ZHANG Liang etc. Effect of Fe<sub>3</sub>O<sub>4</sub> Nanoparticles on P3HT: PCBM Solar Cells[J]. Chinese Journal of Luminescence, 2018,39(10): 1410-1416 DOI: 10.3788/fgxb20183910.1410.
Effect of Fe3O4 Nanoparticles on P3HT: PCBM Solar Cells
the effect of magnetic nanoparticles on the P3HT:PCBM films as the active layer and the properties of polymer solar cells under the external magnetic field were investigated. The Fe
3
O
4
magnetic nanoparticles were prepared by thermal decomposition. The Fe
3
O
4
nanoparticles of different mass fraction were added to P3HT:PCBM solution.The as-casting films by spin coating method were put into the external magnetic field and the self-assembled Fe
3
O
4
+P3HT:PCBM films were formed. Fe
3
O
4
nanoparticles were characterized by TEM and XRD
and the surface morphology of films was investigated by polarizing microscope(POM) and atomic force microscope(AFM). The results show that Fe
3
O
4
nanoparticles are about 10 nm in diameter
and have a certain regulating effect on building film of P3HT:PCBM. When Fe
3
O
4
nanoparticles are added with a mass fraction 1%
the open circuit voltage(
V
oc
) of the solar cells increases by 3.77%
the short-circuit current(
I
st
) increases by 24.93%
and the photoelectric conversion efficiency(PCE) increases by 7.82%.
关键词
Keywords
references
GUNES S, NEUGEBAUER H, SARICIFTCI N S. Conjugated polymer-based organic solar cells[J]. Chem. Rev., 2007, 107(4):1324-1338.
THOMPSON B C, FRECHET J M. Polymer-fullerene composite solar cells[J]. Angew. Chem. Int. Ed., 2008, 47:58-77.
TANG C W. Two-layer organic photovoltaic cell[J]. Appl. Phys. Lett., 1986, 48(2):183-185.
MA W L, YANG C Y, GONG X, et al.. Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology[J]. Adv. Funct. Mater., 2005, 15:1617-1622.
LI G, SHROTRIYA V, HUANG J, et al.. High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends[J]. Nat. Mater., 2005, 4(11):864-868.
KIM Y, COOK S, TULADHAR S M, et al.. A strong regioregularity effect in self-organizing conjugated polymer films and high-efficiency polythiophene:fullerene solar cells[J]. Nat. Mater., 2006, 5(3):197-203.
ZHAO Y, XIE Z, QU Y, et al.. Solvent-vapor treatment induced performance enhancement of poly(3-hexylthiophene):methanofullerene bulk-heterojunction photovoltaic cells[J]. Appl. Phys. Lett., 2007, 90(4):043504-3.
LIU D, YANG B, JANG B, et al.. Molecular design of a wide-band-gap conjugated polymer for efficient fullerene-free polymer solar cells[J]. Energy Environment. Sci., 2013, 6(1):1-3.
LI S, YE L, ZHAO W, et al.. Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells[J]. Adv. Mater., 2016, 28(42):9423-9429.
SARICIFTCI N S, SMILOWITZ L, HEEGER A J, et al.. Photoinduced electron transfer from a conducting polymer to buckminsterfullerene[J]. Science, 1992, 258(27):1474-1476.
PO R, CARBONERA C, BERNARDI A, et al.. The role of buffer layers in polymer solar cells[J]. Energy Environment. Sci., 2011, 4(2):285-310.
NOZIK A J. Quantum dot solar cells[J]. Physica E, 2002, 14(1):115-120.
JELTSCH KF, SCHADEL M, BONEKAMP J B, et al.. Efficiency enhanced hybrid solar cells using a blend of quantum dots and nanorods[J]. Adv. Funct. Mater., 2012, 22(2):397-404.
LI M, NI W, KAN B, et al.. Graphene quantum dots as the hole transport layer material for high-performance organic solar cells[J]. Phys. Chem. Chem. Phys., 2013, 15(43):18973-18978.
ESKANDARI M, AHMADI V, YOUSEFI RAD M, et al.. Plasmon enhanced CdS-quantum dot sensitized solar cell using ZnO nanorods array deposited with Ag nanoparticles as photoanode[J]. Physica E:Low-dimens. Syst. Nanostruct., 2015,68:202-209.
WANG D H, KIM D Y, CHOI K W, et al.. Enhancement of donor-acceptor polymer bulk heterojunction solar cell power conversion efficiencies by addition of Au nanoparticles[J]. Angew. Chem. Int. Ed., 2011, 50(24):5519-5523.
LI Y, HU Y, ZHAO Y, et al.. An electrochemical avenue to green-luminescent graphene quantum dots as potential electron-acceptors for photovoltaics[J]. Adv. Mater., 2011, 23(6):776-780.
邹凤君, 范思大, 谢强, 等. 掺杂石墨烯量子点对P3HT:PCBM太阳能电池的影响[J]. 发光学报, 2016, 37(9):1082-1089. ZOU F J, FAN S D, XIE Q, et al.. Effect of doping graphene quantum dots on the performance of P3HT:PCBM solar cells[J]. Chin. J. Lumin., 2016, 37(9):1082-1089. (in Chinese)
ZHANG D H, LI G D, LI J X, et al.. One-pot synthesis of Ag-Fe3O4 nanocomposite:a magnetically recyclable and efficient catalyst for epoxidation of styrene[J]. Chem. Commun., 2008, 29(29):3414-3416.
AO Y, XU J, SHEN X, et al.. Magnetically separable composite photocatalyst with enhanced photocatalytic activity[J]. J. Hazard. Mater., 2008, 160(2-3):295-300.
WU Z S, YANG S, SUN Y, et al.. 3D nitrogen-doped graphene aerogel-supported Fe3O4 nanoparticles as efficient electrocatalysts for the oxygen reduction reaction[J]. J. Am. Chem. Soc., 2012, 134(22):9082-9085.
SHI D, CHO H S, HUTH C, et al.. Conjugation of quantum dots and Fe3O4 on carbon nanotubes for medical diagnosis and treatment[J]. Appl. Phys. Lett., 2009, 95(22):223702-1-3.
JORDAN A, SCHOLZ R, MAIER-HAU K, et al.. Presentation of a new magnetic feld therapy system for the treatment of human solid tumors with magnetic fluid hyperthermia[J]. J. Magnet. Magnetic Mater., 2001, 225:118-126.
LU C W, HUNG Y, HSIAO J K, et al.. Bifunctional magnetic silica nanoparticles for highly efficient human stem cell labeling[J]. Nano Lett., 2007, 7(1):149-154.
CHANG C F, LIN P H, HOLL W. Aluminum-type superparamagnetic adsorbents:synthesis and application on fluoride removal[J]. Colloids Surf. A:Physicochem. Eng. Aspects, 2006, 280(1-3):194-202.
TSENG J Y, CHANG C Y, CHEN Y H, et al.. Synthesis of micro-size magnetic polymer adsorbent and its application for the removal of Cu(Ⅱ) ion[J]. Colloids Surf. A:Physicochem. Eng. Aspects, 2007, 295(1-3):209-216.
YANG S, CAO C, LI G, et al.. Improving the electrochemical performance of Fe3O4 nanoparticles via a double protection strategy through carbon nanotube decoration and graphene networks[J]. Nano Res., 2014, 8(4):1339-1347.
GUO X Y, YI P F, WANG W J, et al.. Effects of polyethylene glycol on agarose-based magnetic polymer electrolyte for dye-sensitized solar cell[J]. Adv. Mater. Res., 2013, 652-654:860-864.
HAN F, MA L, SUN Q, et al.. Rationally designed carbon-coated Fe3O4 coaxial nanotubes with hierarchical porosity as high-rate anodes for lithium ion batteries[J]. Nano Res., 2014, 7(11):1706-1717.
LI H, LI Y, ZHANG Y, et al.. Facile synthesis of carbon-coated Fe3O4 core-shell nanoparticles as anode materials for lithium-ion batteries[J]. J. Nanopart. Res., 2015, 17(9):1-9.
JIAO J, QIU W, TANG J, et al.. Synthesis of well-defined Fe3O4 nanorods/N-doped graphene for lithium-ion batteries[J]. Nano Res., 2016, 9(5):1256-1266.
YAVUZ C T, MAYO J T, YU W W, et al.. Low-field magnetic separation of monodisperse Fe3O4 nanocrystals[J]. Science, 2006, 314(5801):964-967.
PARK J, AN K, HWANG Y, et al.. Ultra-large-scale syntheses of monodisperse nanocrystals[J]. Nat. Mater., 2004, 3(12):891-895.
Optimization of Graphene Quantum Dots as Doping Materials in Polymer Solar Cells
Improving Performance of Polymer Solar Cells by Regulating PbSe Quantum Dots
Electrochromic Properties of WO3 Film by Spin-coating
Influence of Cesium Chloride Methanol Solution on The Conventional Organic Polymer Solar Cells
Effect of Doping Graphene Quantum Dots on The Performance of P3HT: PCBM Solar Cells
Related Author
Qiang SUN
Si-da FAN
Jin-peng DONG
He-ping SU
Li-juan WANG
Zhan-guo LI
Yi QU
ZHANG Liang
Related Institution
College of Physics Electronic Engineering, Hainan Normal University
College of Optoelectronic Engineering, Changchun University of Science and Technology
College of Chemical Engineering, Changchun University of Technology
Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, School of Materials Science and Engineering, South China University of Technology
Key Laboratory of Luminescence and Optical Information, Ministry of Education, Institute of Optoelectronic Technology, Beijing Jiaotong University