DONG Chao, CHENG Zhi-yuan, NING Hong-yu etc. Structure and Luminescence of Red Phosphor Ba<sub>3</sub>WO<sub>6</sub>: Eu<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2018,39(10): 1365-1370
DONG Chao, CHENG Zhi-yuan, NING Hong-yu etc. Structure and Luminescence of Red Phosphor Ba<sub>3</sub>WO<sub>6</sub>: Eu<sup>3+</sup>[J]. Chinese Journal of Luminescence, 2018,39(10): 1365-1370 DOI: 10.3788/fgxb20183910.1365.
Structure and Luminescence of Red Phosphor Ba3WO6: Eu3+
red phosphors were synthesized by high temperature solid state method. The structure and luminescence properties were characterized by XRD and FL
respectively. The results show that all samples have the cubic double-perovskite structure. The excitation spectrum of Eu
3+
is consisted of a broad band including the Eu
3+
-O
2-
and W
6+
-O
2-
charge transfer bands and several peaks due to 4f-4f transitions of Eu
3+
. The emission spectrum is majorly consisted of transitions
5
D
0
7
F
1
and
5
D
0
7
F
2
. By adjusting the mole ratio of BaCO
3
and WO
3
the peaks of XRD are red shifted and accorded with the standard
the luminescence intensity is promoted. The critical mole fraction of Eu
3+
is 0.05 and the critical distance(
R
c
) is 1.263 4 nm. Under 314 or 394 nm excitation
the samples can emit red light(
max
=596 nm) with CIE color coordinates around (0.618
0.342)
suggesting the synthesized phosphors as promising candidate in the LED lighting and display fields.
关键词
Keywords
references
RAJU G S R, PARK J Y, NAGARAJU G P, et al.. Evolution of CaGd2ZnO5:Eu3+ nanostructures for rapid visualization of latent fingerprints[J]. J. Mater. Chem. C, 2017, 5(17):4246-4256.
PAVITRA1 E, RAJU G S R, PARK J Y, et al.. Novel rare-earth-free yellow Ca5Zn3.92In0.08(V0.99Ta0.01O4)6 phosphors for dazzling white light emitting diodes[J]. Sci. Rep., 2015, 5:10296.
CHEN L, LIN C C, YEH C W, et al.. Light converting inorganic phosphors for white light-emitting diodes[J]. Materials, 2010, 3:2172-2195.
PIMPUTKAR S, SPECK J S, DENBAARS S P, et al..Prospects for LED lighting[J]. Nat. Photon., 2009, 3(4):180-182.
ZHANG Z W, HOU J W, LI J, et al.. Tunable luminescence and energy transfer properties of LiSrPO4:Ce3+,Tb3+,Mn2+ phosphors[J]. J. Alloys Compnd., 2016, 682:557-564.
RAJU G S R, BENTON L, PAVITRA E, et al.. Multifunctional nanoparticles:recent progress in cancer therapeutics[J]. Chem. Commun., 2015, 51(68):13248-13259.
KUMAR S K, LOU C G, XIE Y F, et al.. Energy transfer in co-and tri-doped Y3Al5O12 phosphors[J]. J. Rare Earths, 2017, 35(8):775-782.
MANOHAR T, PRASHANTHA S C, NAGABHUSHANA H, et al..Photoluminescence studies of rare-earth-doped (Ce3+) LaAlO3 nanopowders prepared by facile combustion route[J]. Mater. Today:Proc., 2017, 4(11):11848-11856.
MA P C, YUAN B, SHENG Y, et al.. Tunable emission, thermal stability and energy-transfer properties of SrAl2Si2O8:Ce3+/Tb3+ phosphors for w-LEDs[J]. J. Alloys Compd., 2017, 714:627-635.
YOU C Y, DE ANDRS-GARCA I, FERNNDEZ-MARTNEZ F, et al.. Luminescence properties of AgTb(WO4)2 doped with Ce3+:experimental determination of the Stern-Volmer quenching constant[J]. Ceramics International, 2017, 43(8):6163-6167.
ZHANG Y, GONG W T, YU J J, et al.. Multi-color luminescence properties and energy transfer behaviour in host-sensitized CaWO4:Tb3+,Eu3+ phosphors[J]. RSC Adv., 2016, 6(37):30886-30894.
MAHLIK S, DIAZ F, BOUTINAUD P. Luminescence quenching in KYb(WO4)2-Tb3+:an example of temperature-pressure equivalence[J]. J. Lumin., 2017, 191:18-21.
CHENG Z Y, ZHANG Y J, YU J J, et al.. Luminescence and energy transfer mechanism of -Ba3Y(BO3)3:Ce3+,Tb3+[J]. J. Lumin., 2017, 192:1004-1009.
STEWARD E G, ROOKSBY H P. Pseudo-cubic alkaline-earth tungstates and molybdates of the R3MX6 type[J]. Acta Crystallograph., 1951, 4:503-507.
STEWARD E G, RUNCIMAN W A. Alkaline earth uranates of the R3MX6 type[J]. Nature, 1953, 172(4367):75-76.
SIVAKUMAR V, VARADARAJU U V. An orange-red phosphor under near-UV excitation for white light emitting diodes[J]. J. Electrochem. Soc., 2007, 154(1):J28-J31.
SIVAKUMAR V, VARADARAJU U V. A promising orange-red phosphor under near UV excitation[J]. Electrochem. Solid-State Lett., 2006, 9(6):H35-H38.
YE S, WANG C H, JING X P. Photoluminescence and raman spectra of double-perovskite Sr2Ca(Mo/W)6 with A-and B-site substitutions of Eu3+[J]. J. Electrochem. Soc., 2008, 155(6):J148-J151.
JING L D, LIU X H, LI Y T. Synthesis and optical properties of novel red phosphors Sr3MoO6:Eu3+ with highly enhanced emission by W6+ doping[J]. J. Lumin., 2015, 158:351-355.
LI Y T, LIU X H. Sol-gel synthesis, structure and luminescence properties of Ba2ZnMoO6:Eu3+ phosphors[J]. Mater. Res. Bull., 2015, 64:88-92.
YU R J, WANG C F, CHEN J T, et al.. Photoluminescence characteristics of Eu3+-doped double-perovskite phosphors[J]. J. Solid State Sci. Technol., 2014, 3(3):R33-R37.
YU R J, NOH H M, MOON B K, et al.. Photoluminescence characteristics of Sm3+-doped Ba2CaWO6 as new orange-red emitting phosphors[J]. J. Lumin., 2014, 152:133-137.
LI S H, WEI X T, DENG K M, et al.. A new red-emitting phosphor of Eu3+-doped Sr2MgMoxW1-xO6 for solid state lighting[J]. Curr. Appl. Phys., 2013, 13(7):1288-1291.
THAMMANNA B M, VISWANATHAN K, NAGASWARUPA H P, et al.. Novel MgTiO3:Eu3+ nanophosphor its photometric analysis for multifunctional applications[J]. Mater. Today:Proc., 2017, 4(11):12306-12313.