PANG Tao, WANG Yu, XIE Jian-ping. Color Stable Upconversion White Emission of KY<sub>3</sub>F<sub>10</sub>: Yb<sup>3+</sup>,Tm<sup>3+</sup>,Ho<sup>3+</sup> Nanocrystals Under Single 980 nm Excitation[J]. Chinese Journal of Luminescence, 2018,39(9): 1233-1238
PANG Tao, WANG Yu, XIE Jian-ping. Color Stable Upconversion White Emission of KY<sub>3</sub>F<sub>10</sub>: Yb<sup>3+</sup>,Tm<sup>3+</sup>,Ho<sup>3+</sup> Nanocrystals Under Single 980 nm Excitation[J]. Chinese Journal of Luminescence, 2018,39(9): 1233-1238 DOI: 10.3788/fgxb20183909.1233.
Color Stable Upconversion White Emission of KY3F10: Yb3+,Tm3+,Ho3+ Nanocrystals Under Single 980 nm Excitation
upconversion nanocrystals were synthesized by a simple hydrothermal method. Under the excitation of 980 nm
the upconversion luminescence with chromaticity coordinates nearby equal energy white was obtained. The analysis of the upconversion mechanism shows that the blue
green
and red emissions originate from the energy transfer from Yb
3+
to Tm
3+
and Ho
3+
respectively. More importantly
it is found that the upconversion white emission shows favorable color stability. When the pump power increases from 688 mW to 1 688 mW
the aberration is only 0.027 5. The reason is that
on the one hand
the power dependences of the three primary colors are relatively close to each other. On the other hand
the power dependence of the blue emission gradually decreases as the pump power increases
while the power dependences of the green and red emissions remain unchanged. The saturation of blue emission may be related to the thermal effect caused by laser radiation.
关键词
Keywords
references
XU M, CHEN D Q, HUANG P, et al.. Dual-functional upconversion core@shell nanostructure for white-light-emitting and temperature sensing[J]. J. Mater. Chem. C, 2016, 4:6516-6524.
LIN H, XU D K, TENG D D, et al.. Tunable multicolor and white-light upconversion luminescence in Yb3+/Tm3+/Ho3+ tri-doped NaYF4 micro-crystals[J]. Luminescence, 2014, 30:723-728.
ZHU Y S, CUI S B, LIU M, et al.. Observation of upcovnersion white light and ultrabroad infrared emission in YbAG:Ln3+ (Ln=Nd, Sm, Tb, Er)[J]. Appl. Phys. Express, 2015, 8:072602.
PANG T, CAO W H, XING M M, et al.. Blue and white upconversion emissions of rare-earth ions-doped oxyfluoride phosphors[J]. Physica B, 2010, 405:2216-2219.
DONG B, SONG H W, QIN R F, et al.. Upconversion white light devices:Ln3+-tridoped NaYF4 nanoparticles and PVP modified films[J]. J. Nanosci. Nanotech., 2008, 8:3921-3925.
SILVA D J E C, S D G F, SANTA C P A. White light simulation by upconversion in fluoride glass host[J]. J. Alloys Compd., 2002, 344:260-263.
CHEN G Y, LIU Y, ZHANG Y G, et al.. Bright white upconversion luminescence in rare-earth-ion-doped Y2O3 nanocrystals[J]. Appl. Phys. Lett., 2007, 91:133103.
PANG T, CAO W H. Upconversion luminescence of Er3+ doped and Er3+/Yb3+ co-doped YTaO4[J]. Chin. Sci. Bull., 2008, 53:178-182.
RAPAPORT A, MILLIEZ J, SZIPCS F, et al.. Properties of a new, efficient, blue-emitting material for application in upconversion displays:Yb,Tm:KY3F10[J]. Appl. Opt., 2004, 43:6477-6480.
TONG L L, LI X P, HUA R N, et al.. Comparative study on upconversion luminescence and temperature sensing of -and -NaYF4:Yb3+/Er3+ nano-/micro-crystals derived from a microwave-assisted hydrothermal route[J]. J. Lumin., 2015, 167:386-390.
TIAN Y, TIAN B N, CUI C, et al.. Size-dependent upconversion luminescence and temperature sensing behavior of spherical Gd2O3:Yb3+/Er3+ phosphor[J]. RSC Adv., 2015, 5:14123-14128.
TIAN B N, HUA R N, SUN J S, et al.. Morphology-tailored optical thermometric sensitivity in NaGdF4:Yb3+/Er3+ nanophosphors[J]. Mater. Res. Express, 2017, 4:106203.
WANG F, HAN Y, LIM C S, et al.. Simultaneious phase and size control of upconversion nanocrystals through lanthanide doping[J]. Nature, 2010, 463:1061-1065.
TONG L L, LI X P, HUA R N, et al.. Optical temperature sensing properties of Yb3+/Tm3+ co-doped NaLuF4 crystals[J]. Current Appl. Phys., 2017, 17:999-1004.
ZHANG J J, KAWAMOTO Y J, DAI S X. Infrared-to-green upconversion luminescence and mechanism of Ho3+, Nd3+ and Yb3+ ions in oxyfluoride glass creamis[J]. Chin. Phys., 2004, 13:1156.
YEH D C, PETRIN R R, SIBLEY W A, et al.. Energy transfer between Er3+ and Tm3+ ions in a barium fluoride-thorium fluoride glass[J]. Phys. Rev. B, 1989, 39:80-90.
MAHALINGAM V, MANGIARINI F, VETRONE F, et al.. Bright white upconversion emission from Tm3+/Yb3+/Er3+ -doped Lu3Ga5O12 nanocrystals[J]. J. Phys. Chem. C, 2008, 112:17745-17749.
LEI Y Q, SONG H W, YANG L M, et al.. Upconversion luminescence, intensity saturation effect, and thermal effect in Gd2O3:Er3+,Yb3+ nanowires[J]. J. Chem. Phys., 2005, 123:174710.
XIAO S G, YANG X L, DING J W, et al.. Up-conversion in Yb3+-Tm3+ codoped lutetium fluoride particles prepared by a combustion-fluorization method[J]. J. Phys. Chem. C, 2007, 111:8161-8165.
ZHU W, ZHAO S L, LIANG Z Q, et al.. The color tuning and mechanism of upconversion emission from green to red in NaLuF4:Yb3+/Ho3+ nanocrystals by codoping with Ce3+[J]. J. Alloys Compd., 2016, 659:146-151.
BAI X, SONG H W, PAN G H, et al.. Size-dependent upconversion luminescence in Er/Yb-codoped nanocrystalline yttria:saturation and thermal effects[J]. J. Phys. Chem. C, 2007, 111:13611-13617.
PANG T, WANG J J. Controllable upconversion luminescence and temperature sensing behavior in NaGdF4:Yb3+/Ho3+/Ce3+ nano-phosphors[J]. Mater. Res. Express, 2018, 5:015049.
RAO X T, SONG J K, GAO Y J, et al.. A highly sensitive mixed lanthanide metal-organic framework self-calibrated luminescent thermometer[J]. J. Am. Chem. Soc., 2013, 135:15559-15564.