XIE Kai-he, ZHANG Xiao-wei, SHU Jun-peng etc. Enhanced Photoluminescence of Tb<sup>3+</sup> Ions andSnO<sub>2</sub> Nanocrystals Codoped Silica Thin Films[J]. Chinese Journal of Luminescence, 2018,39(8): 1100-1106
In order to improve the absorption cross section and increase the photoluminescence efficiency of Tb
3+
ions doped silica thin film
SnO
2
nanocrystals with larger absorption cross sections were introduced into the silica thin films
and the greatly enhanced photoluminescence intensity was obtained because of resonant energy transfer mechanism. Firstly
Tb
3+
and SnO
2
nanocrystals codoped silica thin films were fabricated by use of sol-gel and spin coating methods according to the restrictive crystallization principle. The characteristic photoluminescence emission intensity of Tb
3+
ions at 541 nm was enhanced by two orders of magnitude for the film sensitized by SnO
2
nanocrystals with the optimized Sn
4+
concentration. The photoluminescence excitation spectra indicate the non-radiative energy transfer process that takes place between Tb
3+
ions and surface of SnO
2
nanocrystals. Meanwhile
the photoluminescence intensity decay curves suggest the partial incorporation of Tb
3+
ions into the SnO
2
sites
which explains the greatly improving energy transfer efficiency. All these results indicate that SnO
2
nanocrystals could be benefit for enhanced photoluminescence of Tb
3+
ions doped silica thin film as a potential sensitizer.
关键词
Keywords
references
REDDY C M, RAJU B D P, SUSHMA N J, et al.. A review on optical and photoluminescence studies of RE3+(RE=Sm, Dy, Eu, Tb and Nd) ions doped LCZSFB glasses[J]. Renewab. Sustainab. Energy Rev., 2015, 51:556-584.
何伟, 张约品, 王金浩, 等. Tb3+掺杂的氟氧碲酸盐玻璃发光性能[J]. 物理学报, 2011, 60(4):042901. HE W, ZHANG Y P, WANG J H, et al.. Luminescence properties of Tb3+ doped oxyfluoride tellurite glasses[J]. Acta Phys. Sinica, 2011, 60(4):042901. (in Chinese)
徐文, 陈旭, 宋宏伟. 稀土离子上转换发光中的局域电磁场调控[J]. 发光学报, 2018, 39(1):1-26. XU W, CHEN X, SONG H W. Manipulation of local electromagnetic field in upconversion luminescence of rare earth ion[J]. Chin. J. Lumin., 2018, 39(1):1-26. (in Chinese)
DEOPA N, RAO A S. Spectroscopic studies of single near ultraviolet pumped Tb3+ doped lithium lead alumino borate glasses for green lasers and tricolour w-LEDs[J]. J. Lumin., 2018, 194:56-63.
FUJⅡ M, YOSHIDA M, KANZAWA Y. 1.54m photoluminescence of Er3+ doped into SiO2 films containing Si nanocrystals:evidence for energy transfer from Si nanocrystals to Er3+[J]. Appl. Phys. Lett., 1997, 71:1198.
SEO S Y, SHIN J H. Enhancement of the green, visible Tb3+ luminescence from Tb-doped silicon-rich silicon oxide by C co-doping[J]. Appl. Phys. Lett., 2004, 84(22):4379-4381.
LIN T, ZHANG X W, WANG Y J, et al.. Luminescence enhancement due to energy transfer in ZnO nanoparticles and Eu3+ ions co-doped silica[J]. Thin Solid Films, 2012, 520:5815-5819.
LIN T, ZHANG X W, XU J, et al.. Strong energy-transfer-induced enhancement of Er3+ luminescence in In2O3 nanocrystal codoped silica films[J]. Appl. Phys. Lett., 2013, 103:181906.
ZHANG X W, LIN T, ZHANG P, et al.. Highly efficient near-infrared emission in Er3+ doped silica films containing size-tunable SnO2 nanocrystals[J]. Opt. Express, 2014, 22(1):369-376.
GUPTA S K, GHOSH P S, YADAV A K, et al.. Luminescence properties of SrZrO3/Tb3+ perovskite:host-dopant energy-transfer dynamics and local structure of Tb3+[J]. Inorg. Chem., 2016, 55(4):1728-1740.
SAKKA S, KAMIYA K. The sol-gel transition in the hydrolysis of metal alkoxides in relation to the formation of glass fibers and films[J]. J. Non-cryst. Solids, 1982, 48:31-46.
余锡宾, 吴虹. 正硅酸乙酯的水解、缩合过程研究[J]. 无机材料学报, 1996, 11(4):703-707. YU X B, WU H. Studies on the hydrolysis and polycondensation process of TEOS[J]. Inorg. Mater., 1996, 11(4):703-707. (in Chinese)
伞靖, 魏长平, 孙双, 等. Zn、Cu共掺杂TiO2:SiO2薄膜材料的光学性能研究[J]. 发光学报, 2017, 38(1):27-31. SAN J, WEI C P, SUN S, et al.. Optical properties of Zn and Cu co-doped TiO2:SiO2 thin film materials[J]. Chin. J. Lumin., 2017, 38(1):27-31.(in Chinese)
林涛, 万能, 韩敏, 等. SnO2纳米晶的制备、结构与发光性质[J]. 物理学报, 2009, 58(8):5821-5825. LIN T, WAN N, HAN M, et al.. Synthesis, structures and luminescence properties of SnO2 nanoparticles[J]. Acta Phys. Sinica, 2009, 58(8):5821-5825. (in Chinese)
BOLES M A, LING D, HYEON T, et al.. The surface science of nanocrystals[J]. Nat. Mater., 2016, 15(2):141-153.
JIA S J, HUANG L H, MA D L, et al.. Luminescence properties of Tb3+-doped oxyfluoride scintillating glasses[J]. J. Lumin., 2014, 152:241-243.
王欣欣, 黄立辉, 赵士龙, 等. Tb3+掺杂高密度锗酸盐闪烁玻璃的发光性质[J]. 发光学报, 2018, 39(2):115-120. WANG X X, HUANG L H, ZHAO S L, et al.. Luminescence properties of Tb3+ doped high density germanate scintillating glasses[J]. Chin. J. Lumin., 2018, 39(2):115-120. (in Chinese)
RABOUW F T, DEN HARTOG S A, SENDEN T, et al.. Photonic effects on the Frster resonance energy transfer efficiency[J]. Nat. Commun., 2014, 5:3610.
LOUIS B. Electron-electron and electron-hole interactions in small semiconductor crystallites:the size dependence of the lowest excited electronic state[J]. J. Chem. Phys., 1984, 80:4403-4409.
ZHANG X W, LIN S B, LIN T, et al.. Improved sensitization efficiency in Er3+ ions and SnO2 nanocrystals co-doped silica thin films[J]. Phys. Chem. Chem. Phys., 2015, 17:11974-11980.
DAVIES G L, BRIEN J O, GUNKO Y K. Rare earth doped silica nanoparticles via thermolysis of a single source metallasilsesquioxane precursor[J]. Sci. Rep., 2017, 7:45862.
ZHAO L L, LIU Y Q, ZHAI C X, et al.. Photoluminescence properties of Tb-doped and (Zn,Tb) co-doped barium strontium titanate crystalline powders[J]. J. Alloys Compd., 2017, 694(15):721-725.