XI Yang-hong, XIE Guo-da, XU Hui etc. Analysis of Time-varying Magnetic Plasma by Using LTJEC-FDTD Method[J]. Chinese Journal of Luminescence, 2018,39(7): 1029-1035
XI Yang-hong, XIE Guo-da, XU Hui etc. Analysis of Time-varying Magnetic Plasma by Using LTJEC-FDTD Method[J]. Chinese Journal of Luminescence, 2018,39(7): 1029-1035 DOI: 10.3788/fgxb20183907.1029.
Analysis of Time-varying Magnetic Plasma by Using LTJEC-FDTD Method
The Laplace transfer current density convolution finite difference time domain(LTJEC-FDTD) was used to study the medium of time-varying magnetic plasma. A Gaussian-derivative pulsed plane wave was simulated in magnetic plasma by the method of LTJEC-FDTD. The numerical results show that the method of LTJEC-FDTD not only ensure the accuracy but also has higher computational efficiency. By simulating the propagation characteristics of a Whistler wave in the one-dimensional time-varying magnetic plasma
a output wave with higher frequency and enhanced electric field is obtained after switch off the plasma source. Finally
a terahertz wave with 300 GHz is obtained which theoretically verifies that the terahertz wave can be generated from the microwave by the time-varying magnetized plasma. These conclusions provide some theoretical bases for the generation of terahertz wave.
关键词
Keywords
references
赵化侨. 等离子体化学与工艺[M]. 合肥:中国科学技术大学出版社, 1993. ZHAO H Q. Chemistry and Technology of Plasma[M]. Hefei:University of Science and Technology Press, 1993. (in Chinese)
BOYD T J M, SANDERSON J J. Plasma Dynamics[M]. Beijing:Science Press, 1977.
HUNSBERGER F, LUEBBERS R, KUNZ K. Finite-difference time-domain analysis of gyrotropic media. I. Magnetized plasma[J]. IEEE Trans. Antennas Propag., 1992, 40(12):1489-1495.
YOUNG J L. A full finite difference time domain implementation for radio wave propagation in a plasma[J]. Radio Sci., 2016, 29(6):1513-1522.
杨利霞. 离子体介质电磁特性时域有限差分方法及应用[M]. 北京:科学出版社, 2015. YANG L X. Finite-difference Time-domain in Method and Application for Plasma Dielectric Electromagnetic Characteristics[M]. Beijing:Science Press, 2015. (in Chinese)
葛德彪, 闫玉波. 电磁波时域有限差分方法[M]. 西安:西安电子科技大学出版社, 2005. GE D B, YAN Y B. Finite-difference Time-domain in Method for Electromagnetic Waves[M]. Xi'an:Xidian University Press, 2005. (in Chinese)
CUMMER S A. Modeling electromagnetic propagation in the earth-ionosphere waveguide[J]. IEEE Trans. Antennas Propag., 2000, 48(9):1420-1429.
KALLURI D K. Frequency transformation of a whistler wave by a collapsing plasma medium in a cavity:FDTD solution[J]. IEEE Trans. Antennas Propag., 2009, 57(7):1921-1930.
LADE R K, LEE J H, KALLURI D K. Frequency transformer:appropriate and different models for a building-up and collapsing magnetoplasma medium[J]. J. Infrared Millim. Terahertz Waves, 2011, 32(7):960-972.
BAOS A, JR MORI W B, DAWSON J M. Computation of the electric and magnetic fields induced in a plasma created by ionization lasting a finite interval of time[J]. IEEE Trans. Plasma Sci., 1993, 21(1):57-69.
KALLURI D K, GOTETI V R, SESSLER A M. WKB solution for wave propagation in a time-varying magnetoplasma medium:longitudinal propagation[J]. IEEE Trans. Plasma Sci., 1993, 21(1):70-76.
LUDEMAN L C. Fundamentals of Digital Signal Processing[M]. New York:Harper & Row Press, 1986.
YEE K S. Numerical solution of initial boundary problems in isotropic medium[J]. IEEE Trans. Antennas Propag., 1996, 14:302-307.
TAFLOVE A. Computational Electrodynamics:The Finite-difference Time Domain Method[M]. Boston:Artech House Press, 1995.
LEE H J, KALLURI D K, NIGG G C. FDTD Simulation of electromagnetic wave transformation in a dynamic magnetized plasma[J]. J. Infrared Millim. Terahertz Waves, 2000, 21(8):1223-1253.
BERENGER J P. A perfect matched layer for the absorption of electromagnetic waves[J]. J. Computat. Phys., 1994, 114(2):185-200.
GEDNEY S D. An anisotropic PML absorbing media for the FDTD simulation of fields in lossy and dispersive media[J]. IEEE Trans. Antennas. Propag., 1996, 16(4):399-415.
CUMMER S A. A simple, nearly perfectly matched layer for general electromagnetic media[J]. IEEE Microwave Wireless Compon. Lett., 2003, 13(3):128-130.
KALLURI D K. Electromagnetics of Complex Media:Frequency and Polarization Transformer[M]. Boca Raton:Taylor & Francis Press, 2010.
BOOKER H G. Cold Plasma Waves[M]. Hingham:Kluwer Press, 1984.
KALLURI D K. Frequency upshifting with power intensification of a whistler wave by a collapsing plasma medium[J]. J. Appl. Phys., 1996, 79(8):3895-3899.
徐珂, 黄志祥, 吴先良, 等. 基于时域有限差分方法的时变等离子体传播特性[J]. 光子学报, 2017, 46(10):1035002. XU K, HUANG Z X, WU X L, et al.. Propagation properties of wave in time-varying dusty plasma based on finite difference time domain method[J]. Acta Photon. Sinica, 2017, 46(10):1035002. (in Chinese)
高英杰, 叶全意. 辛时域有限差分算法研究等离子体光子晶体透射系数[J]. 光子学报, 2017, 46(4):0419003. GAO Y J, YE Q Y. Research on the transmission coefficient of the plasma photonic crystals with the symplectic finite-difference time-domain method[J]. Acta Photon. Sinica, 2017, 46(4):0419003. (in Chinese)
NIU K, HUANG Z, LI M, et al.. Optimization of the artificially anisotropic parameters in WCS-FDTD method for reducing numerical dispersion[J]. IEEE Trans. Antennas Propag., 2017, 65(12):7389-7394.
KALLURI D K. Electromagnetics of Time Varying Complex Media:Frequency and Polarization Transformer[M]. Beijing:Crc. Press, 2010.
Design of Surface Textures for High Light Extraction Efficiency GaN-based Flip-chip TFLEDs
Inhomogeneous Electromagnetic Field Polarization Enhancement of Silver Nanoparticles Induced by A Fiber Optics Polymer Probe
Related Author
QI Zhao-yi
HU Xiao-long
WANG Hong
ZHENG Shou-guo
LI Miao
ZHANG Jian
ZENG Xin-hua
Jerome Plain
Related Institution
Engineering Research Center for Optoelectronics of Guangdong Province, School of Electronic and Information Engineering, South China University of Technology
Academy of Electronics and Information, South China University of Technology